Real meromorphic differentials: A language for describing meron configurations in planar magnetic nanoelements
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 162-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the language of real meromorphic differentials from the theory of Klein surfaces to describe the metastable states of multiply connected planar ferromagnetic nanoelements that minimize the exchange energy and have no side magnetic charges. These solutions still have sufficient internal degrees of freedom, which can be used as Ritz parameters to minimize other contributions to the total energy or as slow dynamical variables in the adiabatic approximation. The nontrivial topology of the magnet itself leads to several effects first described for the annulus and observed in the experiment. We explain the connection between the numbers of topological singularities of various types in the magnet and the constraints on the positions of these singularities following from the Abel theorem. Using multivalued Prym differentials leads to new meron configurations that were not considered in the classic work by Gross.
Keywords: spintronic, planar nanoelement, magnetic vortex, Prym differential.
Mots-clés : meron, Klein surface
@article{TMF_2017_193_1_a10,
     author = {A. B. Bogatyrev},
     title = {Real meromorphic differentials: {A~language} for describing meron configurations in planar magnetic nanoelements},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {162--176},
     year = {2017},
     volume = {193},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a10/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Real meromorphic differentials: A language for describing meron configurations in planar magnetic nanoelements
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 162
EP  - 176
VL  - 193
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a10/
LA  - ru
ID  - TMF_2017_193_1_a10
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Real meromorphic differentials: A language for describing meron configurations in planar magnetic nanoelements
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 162-176
%V 193
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a10/
%G ru
%F TMF_2017_193_1_a10
A. B. Bogatyrev. Real meromorphic differentials: A language for describing meron configurations in planar magnetic nanoelements. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 162-176. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a10/

[1] K. L. Metlov, “Magnetization patterns in ferromagnetic nanoelements as functions of complex variable”, Phys. Rev. Lett., 105:10 (2010), 107201, 4 pp. | DOI

[2] M. Schiffer, D. C. Spencer, Functionals of Finite Riemann Surfaces, Princeton Univ. Press, Princeton, NJ, 1954 | MR

[3] N. L. Alling, N. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes in Mathematics, 219, Springer, Berlin, 1971 | MR

[4] A. B. Bogatyrev, K. L. Metlov, “Topological constraints on positions of magnetic solitons in multiply-connected planar magnetic nanoelements”, Phys. Rev. B, 95:2 (2017), 024403, 5 pp. ; arXiv: 1609.02509 | DOI

[5] D. J. Gross, “Meron configurations in the two-dimensional ${\rm O}(3)$ $\sigma$-model”, Nucl. Phys. B, 132:5 (1978), 439–456 | DOI | MR

[6] K. L. Metlov, Two-dimensional topological solitons in soft ferromagnetic cylinders, arXiv: cond-mat/0102311

[7] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR | MR | Zbl

[8] A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford Univ. Press, Oxford, 1996

[9] A. A. Belavin, A. M. Polyakov, “Metastabilnye sostoyaniya dvumernogo izotropnogo ferromagnetika”, Pisma v ZhETF, 22:10 (1975), 503–506

[10] A. B. Bogatyrev, K. L. Metlov, “Magnetic states in multiply-connected flat nano-elements”, FNT, 41:10 (2015), 984–988, arXiv: 1504.01162 | DOI

[11] A. B. Bogatyrev, “Elementarnaya konstruktsiya shtrebelevykh differentsialov”, Matem. zametki, 91:1 (2012), 143–146 | DOI | DOI | MR | Zbl

[12] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR

[13] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 1,\;2, Mir, M., 1982 | DOI | MR | MR | Zbl | Zbl

[14] D. Mamford, Lektsii o teta-funktsii, Mir, M., 1988 | MR

[15] H. M. Farkas, I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, 71, Springer, New York, Berlin, 1980 | MR

[16] V. V. Chueshev, Multiplikativnye funktsii i differentsialy Prima na peremennoi rimanovoi poverkhnosti, KemGU, Kemerovo, 2003

[17] A. Bogatyrev, “Computations in moduli spaces”, Computat. Meth. Funct. Theory, 7:2 (2007), 309–324 | DOI | MR | Zbl

[18] A. Bogatyrev, “Prime form and Schottky model”, Computat. Meth. Funct. Theory, 9:1 (2009), 47–55 | DOI | MR | Zbl