Mots-clés : meron, Klein surface
@article{TMF_2017_193_1_a10,
author = {A. B. Bogatyrev},
title = {Real meromorphic differentials: {A~language} for describing meron configurations in planar magnetic nanoelements},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {162--176},
year = {2017},
volume = {193},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a10/}
}
TY - JOUR AU - A. B. Bogatyrev TI - Real meromorphic differentials: A language for describing meron configurations in planar magnetic nanoelements JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 162 EP - 176 VL - 193 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a10/ LA - ru ID - TMF_2017_193_1_a10 ER -
%0 Journal Article %A A. B. Bogatyrev %T Real meromorphic differentials: A language for describing meron configurations in planar magnetic nanoelements %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 162-176 %V 193 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a10/ %G ru %F TMF_2017_193_1_a10
A. B. Bogatyrev. Real meromorphic differentials: A language for describing meron configurations in planar magnetic nanoelements. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 162-176. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a10/
[1] K. L. Metlov, “Magnetization patterns in ferromagnetic nanoelements as functions of complex variable”, Phys. Rev. Lett., 105:10 (2010), 107201, 4 pp. | DOI
[2] M. Schiffer, D. C. Spencer, Functionals of Finite Riemann Surfaces, Princeton Univ. Press, Princeton, NJ, 1954 | MR
[3] N. L. Alling, N. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes in Mathematics, 219, Springer, Berlin, 1971 | MR
[4] A. B. Bogatyrev, K. L. Metlov, “Topological constraints on positions of magnetic solitons in multiply-connected planar magnetic nanoelements”, Phys. Rev. B, 95:2 (2017), 024403, 5 pp. ; arXiv: 1609.02509 | DOI
[5] D. J. Gross, “Meron configurations in the two-dimensional ${\rm O}(3)$ $\sigma$-model”, Nucl. Phys. B, 132:5 (1978), 439–456 | DOI | MR
[6] K. L. Metlov, Two-dimensional topological solitons in soft ferromagnetic cylinders, arXiv: cond-mat/0102311
[7] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR | MR | Zbl
[8] A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford Univ. Press, Oxford, 1996
[9] A. A. Belavin, A. M. Polyakov, “Metastabilnye sostoyaniya dvumernogo izotropnogo ferromagnetika”, Pisma v ZhETF, 22:10 (1975), 503–506
[10] A. B. Bogatyrev, K. L. Metlov, “Magnetic states in multiply-connected flat nano-elements”, FNT, 41:10 (2015), 984–988, arXiv: 1504.01162 | DOI
[11] A. B. Bogatyrev, “Elementarnaya konstruktsiya shtrebelevykh differentsialov”, Matem. zametki, 91:1 (2012), 143–146 | DOI | DOI | MR | Zbl
[12] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR
[13] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 1,\;2, Mir, M., 1982 | DOI | MR | MR | Zbl | Zbl
[14] D. Mamford, Lektsii o teta-funktsii, Mir, M., 1988 | MR
[15] H. M. Farkas, I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, 71, Springer, New York, Berlin, 1980 | MR
[16] V. V. Chueshev, Multiplikativnye funktsii i differentsialy Prima na peremennoi rimanovoi poverkhnosti, KemGU, Kemerovo, 2003
[17] A. Bogatyrev, “Computations in moduli spaces”, Computat. Meth. Funct. Theory, 7:2 (2007), 309–324 | DOI | MR | Zbl
[18] A. Bogatyrev, “Prime form and Schottky model”, Computat. Meth. Funct. Theory, 9:1 (2009), 47–55 | DOI | MR | Zbl