Mots-clés : quasirational solution.
@article{TMF_2017_193_1_a1,
author = {A. B. Shabat},
title = {Constructive scattering theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {15--24},
year = {2017},
volume = {193},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a1/}
}
A. B. Shabat. Constructive scattering theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a1/
[1] A. B. Shabat, “Raznostnoe uravnenie Shredingera i kvazisimmetricheskie mnogochleny”, TMF, 184:2 (2015), 200–211 | DOI | DOI | MR
[2] A. B. Shabat, “Teoriya rasseyaniya dlya deltaobraznykh potentsialov”, TMF, 183:1 (2015), 105–119 | DOI | DOI | MR
[3] A. B. Shabat, “Obratnaya spektralnaya zadacha dlya deltoobraznykh potentsialov”, Pisma v ZhETF, 102:9 (2015), 705–708 | DOI | DOI
[4] P. Koosis, The Logariphmic Integral. I, Cambridge Studies in Advanced Mathematics, 12, Cambridge Univ. Press, 1997 | MR
[5] V. Bargman, “Remarks on the determination of a central field of force from the elastic scattering phase shifts”, Phys. Rev., 75:2 (1949), 301–303 | DOI | MR
[6] A. B. Shabat, “Ratsionalnaya interpolyatsiya i solitony”, TMF, 179:3 (2014), 303–316 | DOI | DOI
[7] M. Sh. Badakhov, A. B. Shabat, “O preobrazovaniyakh Darbu v obratnoi zadache rasseyaniya”, Ufimsk. matem. zhurn., 8:4 (2016), 43–52 | DOI
[8] R. Ch. Kulaev, A. B. Shabat, Obratnaya zadacha rasseyaniya dlya finitnykh potentsialov v prostranstve mer Borelya, YuMI VNTs RAN, Vladikavkaz, 2016
[9] A. B. Shabat, “Funktsionalnoe uravnenie Kantora”, TMF, 189:3 (2016), 355–361 | DOI | DOI | MR
[10] A. B. Shabat, “Obratnaya zadacha rasseyaniya dlya sistemy differentsialnykh uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 75–78 | DOI | MR | Zbl