Keywords: adiabatic approximation, error estimate, uniformly pseudo-Hermitian Hamiltonian.
@article{TMF_2017_192_3_a6,
author = {Wenhua Wang and Huaixin Cao and Zhengli Chen},
title = {Adiabatic approximation for the~evolution generated by an~$A$-uniformly {pseudo-Hermitian} {Hamiltonian}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {489--505},
year = {2017},
volume = {192},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/}
}
TY - JOUR AU - Wenhua Wang AU - Huaixin Cao AU - Zhengli Chen TI - Adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 489 EP - 505 VL - 192 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/ LA - ru ID - TMF_2017_192_3_a6 ER -
%0 Journal Article %A Wenhua Wang %A Huaixin Cao %A Zhengli Chen %T Adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 489-505 %V 192 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/ %G ru %F TMF_2017_192_3_a6
Wenhua Wang; Huaixin Cao; Zhengli Chen. Adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 489-505. http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/
[1] T. Kato, “On the adiabatic theorem of quantum mechanics”, J. Phys. Soc. Japan, 5:6 (1950), 435–439 | DOI
[2] G. A. Hagedorn, A. Joye, “Elementary exponential error estimates for the adiabatic approximation”, J. Math. Anal. Appl., 267:1 (2002), 235–246 | DOI | MR | Zbl
[3] K.-P. Marzlin, B. C. Sanders, “Inconsistency in the application of the adiabatic theorem”, Phys. Rev. Lett., 93:16 (2004), 160408, 4 pp. | DOI
[4] Z. Wu, H. Yang, “Validity of the quantum adiabatic theorem”, Phys. Rev. A, 72:1 (2005), 012114, 5 pp. | DOI | MR | Zbl
[5] D. M. Tong, K. Singh, L. C. Kwek, C. H. Oh, “Sufficiency criterion for the validity of the adiabatic approximation”, Phys. Rev. Lett., 98:15 (2007), 150402, 4 pp. | DOI
[6] D. M. Tong, “Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation”, Phys. Rev. Lett., 104:12 (2010), 120401, 4 pp. | DOI
[7] J.-D. Wu, M.-S. Zhao, J.-I. Chen, Y.-D. Zhang, Adiabatic approximation condition, arXiv: 0706.0264
[8] S. Jansena, M.-B. Ruskai, R. Seiler, “Bounds for the adiabatic approximation with applications to quantum computation”, J. Math. Phys., 48:10 (2007), 102111, 15 pp. | DOI | MR
[9] J. E. Avron, M. Fraas, G. M. Graf, P. Grech, “Adiabatic theorems for generators of contracting evolutions”, Commun. Math. Phys., 314:1 (2012), 163–191 | DOI | MR | Zbl
[10] H. X. Cao, Z. H. Guo, Z. L. Chen, W. H. Wang, “Quantitative sufficient conditions for adiabatic approximation”, Sci. China Phys. Mech. Astron., 56:7 (2013), 1401–1407 | DOI
[11] W. H. Wang, Z. H. Guo, H. X. Cao, “An upper bound for the adiabatic approximation error”, Sci. China Phys. Mech. Astron., 57:2 (2014), 218–224 | DOI
[12] B. M. Yu, H. X. Cao, Z. H. Guo, G. W. H. Wang, “Computable upper bounds for the adiabatic approximation errors”, Sci. China Phys. Mech. Astron., 57:11 (2014), 2031–2038 | DOI
[13] W. H. Wang, H. X. Cao, L. Lu, B. M. Yu, “An upper bound for the generalized adiabatic approximation error with a superposition initial state”, Sci. China Phys. Mech. Astron., 58:3 (2015), 1–7 | DOI
[14] F. H. M. Faisal, J. V. Moloney, “Time-dependent theory of non-Hermitian Schrödinger equation: Application to multiphoton-induced ionisation decay of atoms”, J. Phys. B, 14:19 (1981), 3603–3620 | DOI | MR
[15] X.-C. Gao, J.-B. Xu, T.-Z. Qian, “Invariants and geometric phase for systems with non-Hermitian time-dependent Hamiltonians”, Phys. Rev. A, 46:7 (1992), 3626–3630 | DOI
[16] I. Gilary, A. Fleischer, N. Moiseyev, “Calculations of time-dependent observables in non-Hermitian quantum mechanics: The problem and a possible solution”, Phys. Rev. A, 72:1 (2005), 012117, 8 pp. | DOI | MR | Zbl
[17] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl
[18] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Prog. Phys., 70:6 (2007), 947–1018, arXiv: hep-th/0703096 | DOI
[19] D. Ashok, “Pseudo-Hermitian quantum mechanics”, J. Phys.: Conf. Ser., 287:1 (2011), 012002, 13 pp. | DOI
[20] A. Mostafazadeh, “Pseudo-Hermiticity versus $PT$ symmetry: the necessary condition for the reality of the spectrum of a non–Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: math-ph/0107001 | DOI | MR | Zbl
[21] H.-X. Cao, Z.-H. Guo, Z.-L. Chen, “CPT-frames for non-Hermitian Hamiltonians”, Commun. Theor. Phys., 60:3 (2013), 328–334 | DOI | MR | Zbl
[22] A. Mostafazadeh, “Time-dependent pseudo-Hermitian Hamiltonians defining a unitary quantum system and uniqueness of the metric operator”, Phys. Lett. B, 650:2–3 (2007), 208–212, arXiv: 0706.1872 | DOI | MR | Zbl
[23] Z. H. Guo, H. X. Cao, L. Lu, “Adiabatic approximation in $PT$-symmetric quantum mechanics”, Sci. China Phys. Mech. Astron., 57:10 (2014), 1835–1839 | DOI
[24] C. F. de Morisson Faria, A. Fring, “Time evolution of non-Hermitian Hamiltonian systems”, J. Phys. A: Math. Gen., 39:29 (2006), 9269–9289 | DOI | MR | Zbl
[25] M. Znojil, “Time-dependent version of crypto-Hermitian quantum theory”, Phys. Rev. D, 78:8 (2008), 085003, 5 pp. | DOI | MR
[26] A. Mostafazadeh, “Time-dependent pseudo-Hermitian Hamiltonians defining a unitary quantum system and uniqueness of the metric operator”, Phys. Lett. B, 650:2–3 (2007), 208–212 | DOI | MR
[27] A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics”, Internat. J. Geom. Methods Modern Phys., 7:7 (2010), 1191–1306, arXiv: 0810.5643 | DOI | MR | Zbl
[28] G. Nenciu, G. Rasche, “On the adiabatic theorem for nonself-adjoint Hamiltonians”, J. Phys. A: Math. Theor., 25:21 (1992), 5741–5751 | DOI | MR
[29] C.-P. Sun, “High-order adiabatic approximation for non-Hermitian quantum system and complexification of Berry's phase”, Phys. Scr., 48:4 (1993), 393–398 | DOI
[30] A. Fleischer, N. Moiseyev, “Adiabatic theorem for non-Hermitian time-dependent open systems”, Phys. Rev. A, 72:3 (2005), 032103, 11 pp. | DOI
[31] W. K. Abou Salem, J. Fröhlich, “Adiabatic theorems for quantum resonances”, Commun. Math. Phys., 273:3 (2007), 651–675 | DOI | MR | Zbl
[32] A. Joye, “General adiabatic evolution with a gap condition”, Commun. Math. Phys., 275:1 (2007), 139–162 | DOI | MR | Zbl
[33] M. V. Berry, R. Uzdin, “Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon”, J. Phys. A: Math. Theor., 44:43 (2011), 435303, 26 pp. | DOI | MR | Zbl
[34] A. Leclerc, D. Viennot, G. Jolicard, “The role of the geometric phases in adiabatic population tracking for non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 45:41 (2012), 415201, 15 pp. | DOI | MR | Zbl
[35] A. Leclerc, G. Jolicard, J. P. Killingbeck, “Discussion of the adiabatic hypothesis in control schemes using exceptional points”, J. Phys. B, 46:14 (2013), 145503 | DOI
[36] J. B. Guo, Q. H. Wang, “Time-dependent $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A: Math. Theor., 46:48 (2013), 485302, 20 pp. | DOI | MR
[37] S. Ibáñez, J. G. Muga, “Adiabaticity condition for non-Hermitian Hamiltonians”, Phys. Rev. A, 89:3 (2014), 033403, 10 pp. | DOI