Adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 489-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss an adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian $H(t)$. Such a Hamiltonian is a time-dependent operator $H(t)$ similar to a time-dependent Hermitian Hamiltonian $G(t)$ under a time-independent invertible operator $A$. Using the relation between the solutions of the evolution equations $H(t)$ and $G(t)$, we prove that $H(t)$ and $H^{\dagger}(t)$ have the same real eigenvalues and the corresponding eigenvectors form two biorthogonal Riesz bases for the state space. For the adiabatic approximate solution in case of the minimum eigenvalue and the ground state of the operator $H(t)$, we prove that this solution coincides with the system state at every instant if and only if the ground eigenvector is time-independent. We also find two upper bounds for the adiabatic approximation error in terms of the norm distance and in terms of the generalized fidelity. We illustrate the obtained results with several examples.
Mots-clés : adiabatic evolution
Keywords: adiabatic approximation, error estimate, uniformly pseudo-Hermitian Hamiltonian.
@article{TMF_2017_192_3_a6,
     author = {Wenhua Wang and Huaixin Cao and Zhengli Chen},
     title = {Adiabatic approximation for the~evolution generated by an~$A$-uniformly {pseudo-Hermitian} {Hamiltonian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {489--505},
     year = {2017},
     volume = {192},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/}
}
TY  - JOUR
AU  - Wenhua Wang
AU  - Huaixin Cao
AU  - Zhengli Chen
TI  - Adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 489
EP  - 505
VL  - 192
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/
LA  - ru
ID  - TMF_2017_192_3_a6
ER  - 
%0 Journal Article
%A Wenhua Wang
%A Huaixin Cao
%A Zhengli Chen
%T Adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 489-505
%V 192
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/
%G ru
%F TMF_2017_192_3_a6
Wenhua Wang; Huaixin Cao; Zhengli Chen. Adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 489-505. http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/

[1] T. Kato, “On the adiabatic theorem of quantum mechanics”, J. Phys. Soc. Japan, 5:6 (1950), 435–439 | DOI

[2] G. A. Hagedorn, A. Joye, “Elementary exponential error estimates for the adiabatic approximation”, J. Math. Anal. Appl., 267:1 (2002), 235–246 | DOI | MR | Zbl

[3] K.-P. Marzlin, B. C. Sanders, “Inconsistency in the application of the adiabatic theorem”, Phys. Rev. Lett., 93:16 (2004), 160408, 4 pp. | DOI

[4] Z. Wu, H. Yang, “Validity of the quantum adiabatic theorem”, Phys. Rev. A, 72:1 (2005), 012114, 5 pp. | DOI | MR | Zbl

[5] D. M. Tong, K. Singh, L. C. Kwek, C. H. Oh, “Sufficiency criterion for the validity of the adiabatic approximation”, Phys. Rev. Lett., 98:15 (2007), 150402, 4 pp. | DOI

[6] D. M. Tong, “Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation”, Phys. Rev. Lett., 104:12 (2010), 120401, 4 pp. | DOI

[7] J.-D. Wu, M.-S. Zhao, J.-I. Chen, Y.-D. Zhang, Adiabatic approximation condition, arXiv: 0706.0264

[8] S. Jansena, M.-B. Ruskai, R. Seiler, “Bounds for the adiabatic approximation with applications to quantum computation”, J. Math. Phys., 48:10 (2007), 102111, 15 pp. | DOI | MR

[9] J. E. Avron, M. Fraas, G. M. Graf, P. Grech, “Adiabatic theorems for generators of contracting evolutions”, Commun. Math. Phys., 314:1 (2012), 163–191 | DOI | MR | Zbl

[10] H. X. Cao, Z. H. Guo, Z. L. Chen, W. H. Wang, “Quantitative sufficient conditions for adiabatic approximation”, Sci. China Phys. Mech. Astron., 56:7 (2013), 1401–1407 | DOI

[11] W. H. Wang, Z. H. Guo, H. X. Cao, “An upper bound for the adiabatic approximation error”, Sci. China Phys. Mech. Astron., 57:2 (2014), 218–224 | DOI

[12] B. M. Yu, H. X. Cao, Z. H. Guo, G. W. H. Wang, “Computable upper bounds for the adiabatic approximation errors”, Sci. China Phys. Mech. Astron., 57:11 (2014), 2031–2038 | DOI

[13] W. H. Wang, H. X. Cao, L. Lu, B. M. Yu, “An upper bound for the generalized adiabatic approximation error with a superposition initial state”, Sci. China Phys. Mech. Astron., 58:3 (2015), 1–7 | DOI

[14] F. H. M. Faisal, J. V. Moloney, “Time-dependent theory of non-Hermitian Schrödinger equation: Application to multiphoton-induced ionisation decay of atoms”, J. Phys. B, 14:19 (1981), 3603–3620 | DOI | MR

[15] X.-C. Gao, J.-B. Xu, T.-Z. Qian, “Invariants and geometric phase for systems with non-Hermitian time-dependent Hamiltonians”, Phys. Rev. A, 46:7 (1992), 3626–3630 | DOI

[16] I. Gilary, A. Fleischer, N. Moiseyev, “Calculations of time-dependent observables in non-Hermitian quantum mechanics: The problem and a possible solution”, Phys. Rev. A, 72:1 (2005), 012117, 8 pp. | DOI | MR | Zbl

[17] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl

[18] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Prog. Phys., 70:6 (2007), 947–1018, arXiv: hep-th/0703096 | DOI

[19] D. Ashok, “Pseudo-Hermitian quantum mechanics”, J. Phys.: Conf. Ser., 287:1 (2011), 012002, 13 pp. | DOI

[20] A. Mostafazadeh, “Pseudo-Hermiticity versus $PT$ symmetry: the necessary condition for the reality of the spectrum of a non–Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: math-ph/0107001 | DOI | MR | Zbl

[21] H.-X. Cao, Z.-H. Guo, Z.-L. Chen, “CPT-frames for non-Hermitian Hamiltonians”, Commun. Theor. Phys., 60:3 (2013), 328–334 | DOI | MR | Zbl

[22] A. Mostafazadeh, “Time-dependent pseudo-Hermitian Hamiltonians defining a unitary quantum system and uniqueness of the metric operator”, Phys. Lett. B, 650:2–3 (2007), 208–212, arXiv: 0706.1872 | DOI | MR | Zbl

[23] Z. H. Guo, H. X. Cao, L. Lu, “Adiabatic approximation in $PT$-symmetric quantum mechanics”, Sci. China Phys. Mech. Astron., 57:10 (2014), 1835–1839 | DOI

[24] C. F. de Morisson Faria, A. Fring, “Time evolution of non-Hermitian Hamiltonian systems”, J. Phys. A: Math. Gen., 39:29 (2006), 9269–9289 | DOI | MR | Zbl

[25] M. Znojil, “Time-dependent version of crypto-Hermitian quantum theory”, Phys. Rev. D, 78:8 (2008), 085003, 5 pp. | DOI | MR

[26] A. Mostafazadeh, “Time-dependent pseudo-Hermitian Hamiltonians defining a unitary quantum system and uniqueness of the metric operator”, Phys. Lett. B, 650:2–3 (2007), 208–212 | DOI | MR

[27] A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics”, Internat. J. Geom. Methods Modern Phys., 7:7 (2010), 1191–1306, arXiv: 0810.5643 | DOI | MR | Zbl

[28] G. Nenciu, G. Rasche, “On the adiabatic theorem for nonself-adjoint Hamiltonians”, J. Phys. A: Math. Theor., 25:21 (1992), 5741–5751 | DOI | MR

[29] C.-P. Sun, “High-order adiabatic approximation for non-Hermitian quantum system and complexification of Berry's phase”, Phys. Scr., 48:4 (1993), 393–398 | DOI

[30] A. Fleischer, N. Moiseyev, “Adiabatic theorem for non-Hermitian time-dependent open systems”, Phys. Rev. A, 72:3 (2005), 032103, 11 pp. | DOI

[31] W. K. Abou Salem, J. Fröhlich, “Adiabatic theorems for quantum resonances”, Commun. Math. Phys., 273:3 (2007), 651–675 | DOI | MR | Zbl

[32] A. Joye, “General adiabatic evolution with a gap condition”, Commun. Math. Phys., 275:1 (2007), 139–162 | DOI | MR | Zbl

[33] M. V. Berry, R. Uzdin, “Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon”, J. Phys. A: Math. Theor., 44:43 (2011), 435303, 26 pp. | DOI | MR | Zbl

[34] A. Leclerc, D. Viennot, G. Jolicard, “The role of the geometric phases in adiabatic population tracking for non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 45:41 (2012), 415201, 15 pp. | DOI | MR | Zbl

[35] A. Leclerc, G. Jolicard, J. P. Killingbeck, “Discussion of the adiabatic hypothesis in control schemes using exceptional points”, J. Phys. B, 46:14 (2013), 145503 | DOI

[36] J. B. Guo, Q. H. Wang, “Time-dependent $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A: Math. Theor., 46:48 (2013), 485302, 20 pp. | DOI | MR

[37] S. Ibáñez, J. G. Muga, “Adiabaticity condition for non-Hermitian Hamiltonians”, Phys. Rev. A, 89:3 (2014), 033403, 10 pp. | DOI