Adiabatic approximation for the~evolution generated by an~$A$-uniformly pseudo-Hermitian Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 489-505
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss an adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian $H(t)$. Such a Hamiltonian is a time-dependent operator $H(t)$ similar to a time-dependent Hermitian Hamiltonian $G(t)$ under a time-independent invertible operator $A$. Using the relation between the solutions of the evolution equations $H(t)$ and $G(t)$, we prove that $H(t)$ and $H^{\dagger}(t)$ have the same real eigenvalues and the corresponding eigenvectors form two biorthogonal Riesz bases for the state space. For the adiabatic approximate solution in case of the minimum eigenvalue and the ground state of the operator $H(t)$, we prove that this solution coincides with the system state at every instant if and only if the ground eigenvector is time-independent. We also find two upper bounds for the adiabatic approximation error in terms of the norm distance and in terms of the generalized fidelity. We illustrate the obtained results with several examples.
Mots-clés :
adiabatic evolution
Keywords: adiabatic approximation, error estimate, uniformly pseudo-Hermitian Hamiltonian.
Keywords: adiabatic approximation, error estimate, uniformly pseudo-Hermitian Hamiltonian.
@article{TMF_2017_192_3_a6,
author = {Wenhua Wang and Huaixin Cao and Zhengli Chen},
title = {Adiabatic approximation for the~evolution generated by an~$A$-uniformly {pseudo-Hermitian} {Hamiltonian}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {489--505},
publisher = {mathdoc},
volume = {192},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/}
}
TY - JOUR AU - Wenhua Wang AU - Huaixin Cao AU - Zhengli Chen TI - Adiabatic approximation for the~evolution generated by an~$A$-uniformly pseudo-Hermitian Hamiltonian JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 489 EP - 505 VL - 192 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/ LA - ru ID - TMF_2017_192_3_a6 ER -
%0 Journal Article %A Wenhua Wang %A Huaixin Cao %A Zhengli Chen %T Adiabatic approximation for the~evolution generated by an~$A$-uniformly pseudo-Hermitian Hamiltonian %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 489-505 %V 192 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/ %G ru %F TMF_2017_192_3_a6
Wenhua Wang; Huaixin Cao; Zhengli Chen. Adiabatic approximation for the~evolution generated by an~$A$-uniformly pseudo-Hermitian Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 489-505. http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a6/