Bäcklund transformations for the Jacobi system on an ellipsoid
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 473-488 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider analogues of auto- and hetero-Bäcklund transformations for the Jacobi system on a three-axes ellipsoid. Using the results in a Weierstrass paper, where the change of times reduces integrating the equations of motion to inverting the Abel mapping, we construct the differential Abel equations and auto-Bäcklund transformations preserving the Poisson bracket with respect to which the equations of motion written in the Weierstrass form are Hamiltonian. Transforming this bracket to the canonical form, we can construct a new integrable system on the ellipsoid with a Hamiltonian of the natural form and with a fourth-degree integral of motion in momenta.
Keywords: integrable system, Bäcklund transformation, Jacobi system on an ellipsoid.
@article{TMF_2017_192_3_a5,
     author = {A. V. Tsiganov},
     title = {B\"acklund transformations for {the~Jacobi} system on an~ellipsoid},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--488},
     year = {2017},
     volume = {192},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a5/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Bäcklund transformations for the Jacobi system on an ellipsoid
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 473
EP  - 488
VL  - 192
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a5/
LA  - ru
ID  - TMF_2017_192_3_a5
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Bäcklund transformations for the Jacobi system on an ellipsoid
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 473-488
%V 192
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a5/
%G ru
%F TMF_2017_192_3_a5
A. V. Tsiganov. Bäcklund transformations for the Jacobi system on an ellipsoid. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 473-488. http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a5/

[1] K. Yakobi, Lektsii po dinamike, Gostekhizdat, L., 1936 | Zbl

[2] K. Weierstrass, “Über die geodätischen Linien auf dem dreiaxigen Ellipsoid”, Mathematische Werke I, Mayer and Müller, Berlin, 1894, 257–266 | Zbl

[3] M. Toda, M. Wadati, “A canonical transformation for the exponential lattice”, J. Phys. Soc. Japan, 39:5 (1975), 1204–1211 | DOI | MR | Zbl

[4] S. Wojciechowski, “The analogue of the Bäcklund transformation for integrable many-body systems”, J. Phys. A: Math. Gen., 15:12 (1982), L653–L657 | DOI | MR | Zbl

[5] V. Kuznetsov, P. Vanhaecke, “Bäcklund transformations for finite-dimensional integrable systems: a geometric approach”, J. Geom. Phys., 44:1 (2002), 1–40 | DOI | MR | Zbl

[6] Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR | Zbl

[7] A. V. Tsiganov, “Simultaneous separation for the Neumann and Chaplygin systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93 | DOI | MR | Zbl

[8] A. V. Tsiganov, “On the Chaplygin system on the sphere with velocity dependent potential”, J. Geom. Phys., 92 (2015), 94–99 | DOI | MR | Zbl

[9] A. P. Veselov, “Integriruemye otobrazheniya”, UMN, 46:5(281) (1991), 3–45 | DOI | MR | Zbl

[10] Yu. A. Grigorev, A. P. Sozonov, A. V. Tsyganov, “Ob odnoi integriruemoi sisteme na ploskosti s potentsialom, zavisyaschim ot skorosti”, Nelineinaya dinamika, 12:3 (2016), 355–367 | DOI | MR

[11] A. V. Sozonov, A. V. Tsyganov, “O preobrazovaniyakh Beklunda, svyazyvayuschikh razlichnye uravneniya Gamiltona–Yakobi”, TMF, 183:3 (2015), 372–387 | DOI | DOI | MR

[12] A. V. Tsiganov, “On auto and hetero Bäcklund transformations for the Hénon–Heiles systems”, Phys. Lett. A, 379:45–46 (2015), 2903–2907 | DOI | MR | Zbl

[13] H. Knörrer, “Geodesics on the ellipsoid”, Invent. Math., 59:2 (1980), 119–143 | DOI | MR | Zbl

[14] H. Knörrer, “Geodesics on quadrics and a mechanical problem of C. Neumann”, J. Reine Angew. Math., 334 (1982), 69–78 | DOI | MR | Zbl

[15] J. Moser, “Geometry of quadric and spectral theory”, The Chern Symposium 1979, Proceedings of the International Symposium on Differential Geometry in honor of S.-S. Chern (Berkeley, CA, June 1979), eds. W.-Y. Hsiang, S. Kobayashi, I. M. Singer, A. Weinstein, J. Wolf, H.-H. Wu, Springer, New York, Berlin, 1980, 147–188 | MR | Zbl

[16] A. V. Tsyganov, “Teorema Abelya i preobrazovaniya Beklunda dlya uravnenii Gamiltona–Yakobi”, Tr. MIAN, 295 (2016), 261–291 | DOI | DOI | MR

[17] N. H. Abel, “Memoiré sure une propriété générale d'une class très entendue des fonctions transcendantes”, Oeuvres complètes, v. I, Imprimerie de Grøndahl and Son, Christiania, 1881, 145–211

[18] M. Green, P. Griffiths, “Abel's differential equations”, Houston J. Math., 28:2 (2002), 329–351 | MR | Zbl

[19] H. F. Baker, Abelian functions. Abel's Theorem and the Allied Theory of Theta Functions, Cambridge Univ. Press, Cambridge, 1897 | MR

[20] C. Costello, K. Lauter, “Group law computations on Jacobians of hyperelliptic curves”, Selected Areas in Cryptography, Selected papers from the 18th Annual International Workshop (SAC'2011) (Toronto, ON, August 11–12, 2011), Lecture Notes in Computer Science, 7118, eds. A. Miri, S. Vaudenay, Springer, Heidelberg, 2012, 92–117 | DOI | MR

[21] V. V. Sokolov, “Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa”, TMF, 129:1 (2001), 31–37 | DOI | DOI | MR | Zbl

[22] V. V. Sokolov, A. V. Tsyganov, “Kommutativnye puassonovy podalgebry dlya skobok Sklyanina i deformatsii izvestnykh integriruemykh modelei”, TMF, 133:3 (2002), 485–500 | DOI | DOI | MR | Zbl