Keywords: AKNS hierarchy, strict version, zero curvature form, linearization, oscillating matrix, loop group, loop algebra.
@article{TMF_2017_192_3_a3,
author = {G. F. Helminck},
title = {An~integrable hierarchy including {the~AKNS} hierarchy and its strict version},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {444--458},
year = {2017},
volume = {192},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a3/}
}
G. F. Helminck. An integrable hierarchy including the AKNS hierarchy and its strict version. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 444-458. http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a3/
[1] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Studies Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl
[2] H. Flaschka, A. C. Newell, T. Ratiu, “Kac–Moody Lie algebras and soliton equations. II. Lax equations associated with $A_1^{(1)}$”, Physica D, 9:3, 300–323 | DOI | MR
[3] G. F. Helminck, “The strict AKNS hierarchy: its structure and solutions”, Adv. Math. Phys., 2016 (2016), 3649205, 10, 10 pp. | DOI | MR
[4] G. F. Khelmink, A. F. Khelmink, E. A. Panasenko, “Integriruemye deformatsii v algebre psevdodifferentsialnykh operatorov s tochki zreniya algebraicheskoi teorii Li”, TMF, 174:1 (2013), 154–176 | DOI | DOI | MR | Zbl
[5] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR
[6] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. IHES, 61 (1985), 5–65 | MR | Zbl
[7] A. Pressley, G. Segal, Loop Groups, Oxford Univ. Press, New York, 1986 | MR
[8] R. S. Hamilton, “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc. (N. S.), 7:1 (1982), 65–222 | DOI | MR | Zbl