Hurwitz numbers and products of random matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 395-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study multimatrix models, which may be viewed as integrals of products of tau functions depending on the eigenvalues of products of random matrices. We consider tau functions of the two-component Kadomtsev–Petviashvili (KP) hierarchy (semi-infinite relativistic Toda lattice) and of the B-type KP (BKP) hierarchy introduced by Kac and van de Leur. Such integrals are sometimes tau functions themselves. We consider models that generate Hurwitz numbers $H^{\mathrm E,\mathrm F}$, where $\mathrm E$ is the Euler characteristic of the base surface and $\mathrm F$ is the number of branch points. We show that in the case where the integrands contain the product of $n>2$ matrices, the integral generates Hurwitz numbers with $\mathrm E\le2$ and $\mathrm F\le n+2$. Both the numbers $\mathrm E$ and $\mathrm F$ depend both on $n$ and on the order of the factors in the matrix product. The Euler characteristic $\mathrm E$ can be either an even or an odd number, i.e., it can match both orientable and nonorientable (Klein) base surfaces depending on the presence of the tau function of the BKP hierarchy in the integrand. We study two cases, the products of complex and the products of unitary matrices.
Keywords: Hurwitz number, Schur polynomial, characters of a symmetric group, hypergeometric function, matrix model, products of random matrices, tau function, two-component Kadomtsev–Petviashvili hierarchy, Toda lattice, B-type Kadomtsev–Petviashvili hierarchy (Kac–van de Leur).
Mots-clés : Klein surface, random partition, random matrix
@article{TMF_2017_192_3_a2,
     author = {A. Yu. Orlov},
     title = {Hurwitz numbers and products of random matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {395--443},
     year = {2017},
     volume = {192},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a2/}
}
TY  - JOUR
AU  - A. Yu. Orlov
TI  - Hurwitz numbers and products of random matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 395
EP  - 443
VL  - 192
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a2/
LA  - ru
ID  - TMF_2017_192_3_a2
ER  - 
%0 Journal Article
%A A. Yu. Orlov
%T Hurwitz numbers and products of random matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 395-443
%V 192
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a2/
%G ru
%F TMF_2017_192_3_a2
A. Yu. Orlov. Hurwitz numbers and products of random matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 395-443. http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a2/

[1] A. Yu. Orlov, “New solvable matrix integrals”, Internat. J. Modern Phys. A, 19:supp02 (2004), 276–293 | DOI | MR | Zbl

[2] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, “Matrix models of two-dimensional gravity and Toda theory”, Nucl. Phys. B, 357:2 (1991), 565–618 | DOI | MR

[3] S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, A. Zabrodin, “Matrix models among integrable theories: forced hierarchies and operator formalism”, Nucl. Phys. B, 366:3 (1991), 569–601 | DOI | MR

[4] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, “Generalized Kazakov–Migdal–Kontsevich model: group theory aspects”, Internat. J. Modern Phys. A, 10:14 (1995), 2015–2051 | DOI | MR

[5] A. Zabrodin, “New applications of non-Hermitian random matrices”, Ann. Inst. Henri Poincaré, 4, Suppl. 2 (200), S851–S861, arXiv: ; R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, P. Wiegmann, “Normal random matrix ensemble as a growth problem”, Nucl. Phys. B, 704:3 (2005), 407–444 cond-mat/0210331 | DOI | MR | DOI | MR | Zbl

[6] Dzh. Kharnad, A. Yu. Orlov, “Skalyarnye proizvedeniya simmetricheskikh funktsii i matrichnye integraly”, TMF, 137:3 (2003), 375–392 | DOI | DOI | MR | Zbl

[7] A. Yu. Orlov, “Soliton theory, symmetric functions and matrix integrals”, Acta Appl. Math., 86:1–2 (2005), 131–158 | DOI | MR | Zbl

[8] P. Di Francesco, C. Itzykson, “A generating function for fatgraphs”, Ann. Inst. Henri Poincaré Phys. Théor., 59:2 (1993), 117–139 | MR | Zbl

[9] V. A. Kazakov, M. Staudacher, T. Wynter, “Character expansion methods for matrix models of dually weighted graphs”, Commun. Math. Phys., 177:2 (1996), 451–468, arXiv: hep-th/9502132 | DOI | MR | Zbl

[10] V. Kac, J. van de Leur, “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, The Bispectral Problem (Montréal, Canada, March 1997), CRM Proceedings and Lecture Notes, 14, eds. J. Harnad, A. Kasman, AMS, Providence, RI, 1998, 159–202 | DOI | MR | Zbl

[11] A. Yu. Orlov, D. M. Scherbin, Fermionic representation for basic hypergeometric functions related to Schur polynomials, arXiv: nlin/0001001

[12] A. Yu. Orlov, D. M. Scherbin, “Gipergeometricheskie resheniya solitonnykh uravnenii”, TMF, 128:1 (2001), 84–108 | DOI | DOI | MR | Zbl

[13] J. Harnad, A. Yu. Orlov, “Fermionic construction of partition functions for two matrix models and perturbative Schur functions expansions”, J. Phys. A.: Math. Gen., 39:28 (2006), 8783–8809 | DOI | MR | Zbl

[14] J. W. van de Leur, “Matrix integrals and geometry of spinors”, J. Nonlinear Math. Phys., 8:2 (2001), 288–310 | DOI | MR

[15] A. Yu. Orlov, T. Shiota, K. Takasaki, Pfaffian structures and certain solutions to BKP hierarchies II. Multiple integrals, arXiv: 1611.02244

[16] A. Yu. Orlov, “Deformed Ginibre ensembles and integrable systems”, Phys. Lett. A, 378:4 (2014), 319–328 | DOI | MR

[17] R. de Mello Koch, S. Ramgoolam, “From Matrix Models and quantum fields to Hurwitz space and the absolute Galois group”, arXiv: 1002.1634

[18] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, “On KP-integrable Hurwitz functions”, JHEP, 11 (2014), 080, 30 pp., arXiv: 1405.1395 | DOI | MR | Zbl

[19] P. Zograf, “Enumeration of Gronthendieck's dessons and KP hierarchy”, Int. Math. Res. Notices, 2015:24 (2015), 13533–13544, arXiv: 1312.2538 | DOI | MR

[20] I. P. Goulden, M. Guay-Paquet, J. Novak, “Monotone Hurwitz numbers and HCIZ integral”, Ann. Math. Blaise Pascal, 21:1 (2014), 71–99 | DOI | MR

[21] J. Ambjørn, L. O. Chekhov, “The matrix model for dessins d'enfants”, Ann. Inst. Henri Poincaré D, 1:3 (2014), 337–361, arXiv: 1404.4240 | DOI | MR | Zbl

[22] S. M. Natanzon, A. Yu. Orlov, Hurwitz numbers and BKP hierarchy, arXiv: 1407.8323

[23] S. M. Natanzon, A. Yu. Orlov, “BKP and projective Hurwitz numbers”, Lett. Math. Phys., 107:6 (2017), 1065–1109, arXiv: 1501.01283 | DOI | MR

[24] L. O. Chekhov, “The Harer–Zagier recursion for an irregular spectral curve”, J. Geom. Phys., 110 (2016), 30–43, arXiv: 1512.09278 | DOI | MR | Zbl

[25] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[26] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | MR | Zbl

[27] A. Alexandrov, “Matrix models for random partitions”, Nucl. Phys. B, 851:3 (2011), 620–650 | DOI | MR | Zbl

[28] Ya. Amborn, L. O. Chekhov, “Matrichnaya model dlya gipergeometricheskikh chisel Gurvitsa”, TMF, 181:3 (2014), 421–435, arXiv: 1409.3553 | DOI | DOI

[29] A. Yu. Orlov, E. Strahov, “Products of random matrices and $\tau$-functions”, to be published

[30] G. Akemann, J. R. Ipsen, M. Kieburg, Products of rectangular random matrices: singular values and progressive scattering, arXiv: 1307.7560

[31] G. Akemann, T. Checinski, M. Kieburg, “Spectral correlation functions of the sum of two independent complex Wishart matrices with unequal covariances”, J. Phys. A: Math. Theor., 49:31 (2016), 315201, 33 pp. | DOI | MR

[32] G. Akemann, E. Strahov, “Hard edge limit of the product of two strongly coupled random matrices”, Nonlinearity, 29:12 (2016), 3743–3776, arXiv: 1511.09410 | DOI | MR

[33] E. Strahov, “Dynamical correlation functions for products of random matrices”, Random Matrices Theory Appl., 4:4 (2015), 1550020, 28 pp., arXiv: 1505.02511 | DOI | MR

[34] E. Strahov, “Differential equations for singular values of products of Ginibre random matrices”, J. Phys. A: Math. Theor., 47:32 (2014), 325203, 27 pp., arXiv: 1403.6368 | DOI | MR

[35] I. P. Goulden, D. M. Jackson, “The KP hierarchy, branched covers, and triangulations”, Adv. Math., 219:3 (2008), 932–951 | DOI | MR | Zbl

[36] A. Okounkov, “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7:4 (200), 447–453, arXiv: math/0004128 | DOI | MR

[37] A. Okounkov, R. Pandharipande, “Gromov–Witten theory, Hurwitz theory and completed cycles”, Ann. Math. (2), 163:2 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR

[38] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Polnyi nabor operatorov razrezaniya i skleiki v teorii Gurvitsa–Kontsevicha”, TMF, 166:1 (2011), 3–27, arXiv: 0904.4227 | DOI

[39] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR | MR | Zbl

[40] R. Dijkgraaf, “Mirror symmetry and elliptic curves”, The Moduli Space of Curves, Progress in Mathematics, 129, eds. R. Dijkgraaf, C. Faber, G. van der Geer, Birkhäuser, Boston, 1995, 149–163 | DOI | MR | Zbl

[41] A. D. Mednykh, G. G. Pozdnyakova, “O chisle neekvivalentnykh nakrytii nad kompaktnoi neorientiruemoi poverkhnostyu”, Sib. matem. zhurn., 27:1 (1986), 123–131 | MR | Zbl

[42] G. A. Jones, “Enumeration of homomorphisms and surface-coverings”, Quart. J. Math. Oxford Ser. (2), 46:4 (1995), 485–507 | DOI | MR | Zbl

[43] J. Harnad, “Weighted Hurwitz numbers and hypergeometric $\tau$-functions: an overview”, String-Math 2014 (University of Alberta, Edmonton, Alberta, Canada, June 9–13, 2014), Proceedings of Symposia in Pure Mathematics, 93, eds. V. Bouchard, C. Doran, S. Mendez-Diez, C. Quigley, AMS, Providence, RI, 2016, 289–333, arXiv: 1504.03408 | MR | Zbl

[44] M. Guay-Paquet, J. Harnad, “2D Toda $\tau$-functions as combinatorial generating functions”, Lett. Math. Phys., 105:6 (2015), 827–852 | DOI | MR | Zbl

[45] A. Yu. Orlov, T. Shiota, K. Takasaki, Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions, arXiv: 1201.4518

[46] J. Harnad, A. Yu. Orlov, “Hypergeometric $\tau$-functions, Hurwitz numbers and enumeration of paths”, Commun. Math. Phys., 338:1 (2015), 267–284, arXiv: 1407.7800 | DOI | MR | Zbl

[47] K. I. Gross, D. S. Richards, “Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions”, Trans. Amer. Math. Soc., 301:2 (1987), 781–811 | DOI | MR | Zbl

[48] I. P. Goulden, M. Guay-Paquet, J. Novak, “Monotone Hurwitz numbers in genus zero”, Canad. J. Math., 65:5 (2013), 1020–1042, arXiv: 1204.2618 | DOI | MR | Zbl

[49] M. Kazarian, P. Zograf, “Virasoro constraints and topological recursion for Grothendieck's dessin counting”, Lett. Math. Phys., 105:8 (2015), 1057–1084, arXiv: 1406.5976 | DOI | MR

[50] A. Mironov, A. Morozov, G. Semenoff, “Unitary matrix integrals in the framework of the generalized Kontsevich model”, Internat. J. Modern. Phys. A, 11:28 (1996), 5031–5080 | DOI | MR | Zbl

[51] K. Takasaki, “Initial value problem for the Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 139–163 | MR | Zbl

[52] T. Takebe, “Representation theoretical meaning of initial value problem for the Toda lattice hierarchy. I”, Lett. Math. Phys., 21:1 (1991), 77–84 | DOI | MR | Zbl

[53] N. L. Alling, N. Greenleaf, Foundation of the Theory of Klein Surfaces, Lecture Notes in Mathematics, 219, Springer, Berlin, 1971 | DOI | MR

[54] S. M. Natanzon, “Kleinovy poverkhnosti”, UMN, 45:6(276) (1990), 47–90 | DOI | MR | Zbl

[55] S. M. Natanzon, Moduli of Riemann Surfaces, Real Algebraic Curves and Their Superanalogs, Translations of Mathematical Monographs, 225, AMS, Providence, RI, 2004 | MR

[56] S. M. Natanzon, “Diskovye odinarnye chisla Gurvitsa”, Funkts. analiz i ego pril., 44:1 (2010), 44–58 | DOI | DOI | Zbl

[57] A. D. Mednykh, “Opredelenie chisla neekvivalentnykh nakrytii nad kompaktnoi rimanovoi poverkhnostyu”, Dokl. AN SSSR, 239:2 (1978), 269–271 | Zbl

[58] S. K. Lando, A. K. Zvonkin, Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010 | DOI | MR

[59] A. A. Alexeevski, S. M. Natanzon, “Noncommutative two-dimensional field theories and Hurwitz numbers for real algebraic curves”, Selecta Math. (N. S.), 12:3–4 (2006), 307–377, arXiv: math/0202164 | DOI | MR | Zbl

[60] A. V. Alekseevskii, S. M. Natanzon, “Algebra dvudolnykh grafov i chisla Gurvitsa loskutnykh poverkhnostei”, Izv. RAN. Ser. matem., 72:4 (2008), 3–24 | DOI | DOI | MR | Zbl

[61] J. W. van de Leur, A. Yu. Orlov, “Pfaffian and determinantal tau functions I”, Lett. Math. Phys., 105:11 (2015), 1499–1531 | DOI | MR | Zbl

[62] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[63] A. K. Pogrebkov, V. N. Sushko, “Kvantovye solitony i ikh svyaz s fermionnymi polyami pri $(\sin\varphi)_2$-vzaimodeistvii”, TMF, 26:3 (1976), 419–424 | DOI | MR

[64] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, “Integrability of Hurwitz partition functions. I. Summary”, J. Phys. A: Math. Theor., 45:4 (2012), 045209, 10 pp., arXiv: 1103.4100 | DOI | MR | Zbl

[65] I. P. Goulden, D. M. Jackson, “Transitive factorizations into transpositions and holomorphic mappings on the sphere”, Proc. Amer. Math. Soc., 125:1 (1997), 51–60 | DOI | MR | Zbl

[66] Ya. Eliashberg, “Symplectic field theory and its applications”, Proceedings of the International Congress of Mathematicians (Madrid, Spain, August 22–26, 2006), v. 1, eds. M. Sanz-Solé, J. Soria, J. L. Varona, J. Verdera, EMS, Zürich, 2007, 117–246

[67] A. Yu. Orlov and T. Shiota, “Schur function expansion for normal matrix model and associated discrete matrix models”, Phys. Lett. A, 343:5 (2005), 384–396

[68] A. Alexandrov and A. V. Zabrodin, “Free fermions and tau-functions”, J. Geom. Phys., 67 (2013), 37–80, arXiv: 1212.6049

[69] K. Takasaki, “Generalized string equations for double Hurwitz numbers”, J. Geom. Phys., 62:5 (2012), 1135–1156

[70] M. E. Kazarian and S. K. Lando, “An algebro-geometric proof of Witten's conjecture”, J. Amer. Math. Soc., 20:4 (2007), 1079–1089