Eigenvalues of Bethe vectors in the~Gaudin model
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 369-394

Voir la notice de l'article provenant de la source Math-Net.Ru

According to the Feigin–Frenkel–Reshetikhin theorem, the eigenvalues of higher Gaudin Hamiltonians on Bethe vectors can be found using the center of an affine vertex algebra at the critical level. We recently calculated explicit Harish-Chandra images of the generators of the center in all classical types. Combining these results leads to explicit formulas for the eigenvalues of higher Gaudin Hamiltonians on Bethe vectors. The Harish-Chandra images can be interpreted as elements of classical $\mathcal{W}$-algebras. By calculating classical limits of the corresponding screening operators, we elucidate a direct connection between the rings of $q$-characters and classical $\mathcal W$-algebras.
Keywords: Gaudin Hamiltonian, Bethe vector, $q$-character, classical $\mathcal{W}$-algebra.
@article{TMF_2017_192_3_a1,
     author = {A. I. Molev and E. E. Mukhin},
     title = {Eigenvalues of {Bethe} vectors in {the~Gaudin} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--394},
     publisher = {mathdoc},
     volume = {192},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a1/}
}
TY  - JOUR
AU  - A. I. Molev
AU  - E. E. Mukhin
TI  - Eigenvalues of Bethe vectors in the~Gaudin model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 369
EP  - 394
VL  - 192
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a1/
LA  - ru
ID  - TMF_2017_192_3_a1
ER  - 
%0 Journal Article
%A A. I. Molev
%A E. E. Mukhin
%T Eigenvalues of Bethe vectors in the~Gaudin model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 369-394
%V 192
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a1/
%G ru
%F TMF_2017_192_3_a1
A. I. Molev; E. E. Mukhin. Eigenvalues of Bethe vectors in the~Gaudin model. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 369-394. http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a1/