Generalized Yangians and their Poisson counterparts
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 351-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By generalized Yangians, we mean Yangian-like algebras of two different classes. One class comprises the previously introduced so-called braided Yangians. Braided Yangians have properties similar to those of the reflection equation algebra. Generalized Yangians of the second class, $RTT$-type Yangians, are defined by the same formulas as the usual Yangians but with other quantum $R$-matrices. If such an $R$-matrix is the simplest trigonometric $R$-matrix, then the corresponding $RTT$-type Yangian is called a $q$-Yangian. We claim that each generalized Yangian is a deformation of the commutative algebra $\operatorname{Sym}(gl(m)[t^{-1}])$ if the corresponding $R$-matrix is a deformation of the flip operator. We give the explicit form of the corresponding Poisson brackets.
Mots-clés : current $R$-matrix, Poisson structure
Keywords: braided Yangian, quantum symmetric polynomial, quantum determinant, deformation property.
@article{TMF_2017_192_3_a0,
     author = {D. I. Gurevich and P. A. Saponov},
     title = {Generalized {Yangians} and their {Poisson} counterparts},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {351--368},
     year = {2017},
     volume = {192},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a0/}
}
TY  - JOUR
AU  - D. I. Gurevich
AU  - P. A. Saponov
TI  - Generalized Yangians and their Poisson counterparts
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 351
EP  - 368
VL  - 192
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a0/
LA  - ru
ID  - TMF_2017_192_3_a0
ER  - 
%0 Journal Article
%A D. I. Gurevich
%A P. A. Saponov
%T Generalized Yangians and their Poisson counterparts
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 351-368
%V 192
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a0/
%G ru
%F TMF_2017_192_3_a0
D. I. Gurevich; P. A. Saponov. Generalized Yangians and their Poisson counterparts. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 3, pp. 351-368. http://geodesic.mathdoc.fr/item/TMF_2017_192_3_a0/

[1] D. Gurevich, P. Saponov, Braided Yangians, arXiv: 1612.05929

[2] V. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986), v. 1\;2, ed. A. M. Gleason, AMS, Providence, RI, 1987, 798–820 | MR | Zbl

[3] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Teoriya predstavlenii algebry (modifitsirovannogo) uravneniya otrazhenii $GL(m|n)$ tipa”, Algebra i analiz, 20:2 (2008), 70–133 | DOI | MR | Zbl

[4] A. Molev, Yangians and Classical Lie Algebras, Mathematical Surveys and Monographs, 143, AMS, Providence, RI, 2007 | DOI | MR

[5] D. V. Talalaev, “Kvantovaya sistema Godena”, Funkts. analiz i ego pril., 40:1 (2006), 86–91 | DOI | DOI | MR | Zbl

[6] A. Isaev, O. Ogievetsky, P. Pyatov, “On quantum matrix algebras satisfying the Cayley–Hamilton–Newton identities”, J. Phys. A, 32:9 (1999), L115–L121 | DOI | MR | Zbl

[7] A. P. Isaev, P. Pyatov, “Spectral extension of the quantum group cotangent bundle”, Comm. Math. Phys., 288:3 (2009), 1137–1179 | DOI | MR | Zbl

[8] L. Frappat, N. Jing, A. Molev, E. Ragoucy, “Higher Sugawara operators for the quantum affine algebras of type $A$”, Commun. Math. Phys., 345:2 (2016), 631–657, arXiv: 1505.03667 | DOI | MR

[9] Sh. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press, Cambridge, 1995 | DOI | MR

[10] V. G. Drinfeld, “O kvadratichnykh kommutatsionnykh sootnosheniyakh v kvaziklassicheskom sluchae”, Matematicheskaya fizika, funktsionalnyi analiz, Naukova dumka, Kiev, 1986, 24–34 | MR | MR

[11] A. Polishchuk, L. Positselski, Quadratic Algebras, University Lecture Series, 37, AMS, Providence, RI, 2005 | DOI | MR

[12] J. Donin, D. Gurevich, S. Shnider, “Double quantization on some orbits in the coadjoint representations of simple Lie groups”, Comm. Math. Phys., 204:1 (1999), 39–60 | DOI | MR | Zbl

[13] J. Donin, Double quantization on coadjoint representations of semisimple Lie groups and their orbits, arXiv: math/9909160

[14] D. I. Gurevich, “Algebraicheskie aspekty kvantovogo uravneniya Yanga–Bakstera”, Algebra i analiz, 2:4 (1990), 119–148 | MR | Zbl