Rings of $\mathbf h$-deformed differential operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 322-334

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the center of the ring $\operatorname{Diff}_{\mathbf{h}}(n)$ $\mathbf{h}$-deformed differential operators of type A. We establish an isomorphism between certain localizations of $\operatorname{Diff}_{\mathbf{h}}(n)$ and the Weyl algebra $\mathrm{W}_n$, extended by $n$ indeterminates.
Keywords: reduction algebra, oscillatory realization, ring of differential operators, Gelfand–Kirillov conjecture, dynamical Yang–Baxter equation.
@article{TMF_2017_192_2_a9,
     author = {O. V. Ogievetskii and B. Herlemont},
     title = {Rings of $\mathbf h$-deformed differential operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {322--334},
     publisher = {mathdoc},
     volume = {192},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a9/}
}
TY  - JOUR
AU  - O. V. Ogievetskii
AU  - B. Herlemont
TI  - Rings of $\mathbf h$-deformed differential operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 322
EP  - 334
VL  - 192
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a9/
LA  - ru
ID  - TMF_2017_192_2_a9
ER  - 
%0 Journal Article
%A O. V. Ogievetskii
%A B. Herlemont
%T Rings of $\mathbf h$-deformed differential operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 322-334
%V 192
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a9/
%G ru
%F TMF_2017_192_2_a9
O. V. Ogievetskii; B. Herlemont. Rings of $\mathbf h$-deformed differential operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 322-334. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a9/