Rings of $\mathbf h$-deformed differential operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 322-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the center of the ring $\operatorname{Diff}_{\mathbf{h}}(n)$ $\mathbf{h}$-deformed differential operators of type A. We establish an isomorphism between certain localizations of $\operatorname{Diff}_{\mathbf{h}}(n)$ and the Weyl algebra $\mathrm{W}_n$, extended by $n$ indeterminates.
Keywords: reduction algebra, oscillatory realization, ring of differential operators, Gelfand–Kirillov conjecture, dynamical Yang–Baxter equation.
@article{TMF_2017_192_2_a9,
     author = {O. V. Ogievetskii and B. Herlemont},
     title = {Rings of $\mathbf h$-deformed differential operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {322--334},
     year = {2017},
     volume = {192},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a9/}
}
TY  - JOUR
AU  - O. V. Ogievetskii
AU  - B. Herlemont
TI  - Rings of $\mathbf h$-deformed differential operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 322
EP  - 334
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a9/
LA  - ru
ID  - TMF_2017_192_2_a9
ER  - 
%0 Journal Article
%A O. V. Ogievetskii
%A B. Herlemont
%T Rings of $\mathbf h$-deformed differential operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 322-334
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a9/
%G ru
%F TMF_2017_192_2_a9
O. V. Ogievetskii; B. Herlemont. Rings of $\mathbf h$-deformed differential operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 322-334. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a9/

[1] J. Mickelsson, “Step algebras of semisimple subalgebras of Lie algebras”, Rep. Math. Phys., 4:4 (1973), 307–318 | DOI | MR

[2] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Proektsionnye operatory dlya prostykh grupp Li. II. Obschaya skhema postroeniya ponizhayuschikh operatorov. Sluchai grupp $SU(n)$”, TMF, 15:1 (1973), 107–119 | DOI | MR | Zbl

[3] V. N. Tolstoy, “Fortieth anniversary of extremal projector method for Lie symmetries”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Satellite Conference to the Fourth European Congress of Mathematics (Karlstad University, Karlstad, Sweden, July 5–10, 2004), Contemporary Mathematics, 391, eds. J. Fuchs, J. Mickelsson, G. Rozenblioum, A. Stolin, A. Westerberg, AMS, Providence, RI, 2005, 371–384 | DOI | MR | Zbl

[4] D. P. Zhelobenko, Predstavleniya reduktivnykh algebr Li, Nauka, M., 1993 | MR

[5] O. V. Ogievetskii, S. M. Khoroshkin, “Diagonalnaya reduktsionnaya algebra polnoi lineinoi algebry Li”, Funkts. analiz i ego pril., 44:3 (2010), 27–49 | DOI | DOI | MR | Zbl

[6] S. Khoroshkin, O. V. Ogievetsky, “Structure constants of diagonal reduction algebras of $\mathfrak{gl}$ type”, SIGMA, 7 (2011), 064, 34 pp. | MR | Zbl

[7] S. Khoroshkin, O. Ogievetsky, Diagonal reduction algebra and reflection equation, arXiv: 1510.05258

[8] J. Wess, B. Zumino, “Covariant differential calculus on the quantum hyperplane”, Nucl. Phys. B Proc. Suppl., 18:2 (1990), 302–312 | DOI | MR

[9] G. Felder, “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians (Zürich, Switzerland, August 3–11, 1994), ed. S. D. Chatterji, Birkhäuser, Basel, 1995, 1247–1255 | DOI | MR | Zbl

[10] J.-L. Gervais, A. Neveu, “Novel triangle relation and absence of tachyons in Liouville string field theory”, Nucl. Phys. B, 238:1 (1984), 125–141 | DOI | MR

[11] P. Etingof, O. Schiffmann, “Lectures on the dynamical Yang–Baxter equations”, Quantum Groups and Lie Theory (Durham, UK, July 19–29, 1999), London Mathematical Society Lecture Note Series, 290, ed. A. Pressley, Cambridge Univ. Press, Cambridge, 2001, 89–129 | MR | Zbl

[12] S. Khoroshkin, O. Ogievetsky, “Rings of fractions of reduction algebras”, Algebras and Representation Theory, 17:1 (2014), 265–274 | DOI | MR | Zbl

[13] I. M. Gelfand, A. A. Kirillov, “Sur les corps liés aux algèbres enveloppantes des algèbres de Lie”, Inst. Hautes Études Sci. Publ. Math., 31 (1966), 5–19 | DOI | MR | Zbl

[14] O. Ogievetsky, “Differential operators on quantum spaces for $GL_q (n)$ and $SO_q (n)$”, Lett. Math. Phys., 24:3 (1992), 245–255 | DOI | MR | Zbl

[15] S. Khoroshkin, O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319:5 (2008), 2113–2165 | DOI | MR | Zbl

[16] B. Herlemont, O. Ogievetsky, Differential calculus on $\mathbf h$-deformed spaces, arXiv: 1704.05330

[17] O. Ogievetsky, T. Popov, “$R$-matrices in rime”, Adv. Theor. Math. Phys., 14:2 (2010), 439–505 | DOI | MR | Zbl

[18] M. Artin, Noncommutative Rings; Lecture Notes, 1999,\par http://math.mit.edu/<nobr>$\scriptstyle\sim$</nobr>etingof/artinnotes.pdf

[19] I. V. Cherednik, “Faktorizuyuschiesya chastitsy na polupryamoi i sistemy kornei”, TMF, 61:1 (1984), 35–44 | DOI | MR | Zbl

[20] E. K. Sklyanin, “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21:10 (1988), 2375–2389 | DOI | MR | Zbl

[21] N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, “Central extensions of quantum current groups”, Lett. Math. Phys., 19:2 (1990), 133–142 | DOI | MR | Zbl

[22] P. P. Kulish, E. K. Sklyanin, “Algebraic structures related to the reflection equations”, J. Phys. A, 25:22 (1992), 5963–5975 | DOI | MR | Zbl

[23] A. P. Isaev, O. V. Ogievetsky, “On baxterized solutions of reflection equation and integrable chain models”, Nucl. Phys. B, 760:3 (2007), 167–183, arXiv: math-ph/0510078 | DOI | MR | Zbl

[24] A. Isaev, O. Ogievetsky, P. Pyatov, “Generalized Cayley–Hamilton–Newton identities”, Czechoslovak J. Phys., 48:11 (1998), 1369–1374 | DOI | MR | Zbl

[25] A. P. Isaev, A. I. Molev, O. V. Ogievetsky, “A new fusion procedure for the Brauer algebra and evaluation homomorphisms”, Int. Math. Res. Notices, 2012:11 (2012), 2571–2606 | DOI | MR | Zbl

[26] A. P. Isaev, A. I. Molev, O. V. Ogievetsky, “Idempotents for Birman–Murakami–Wenzl algebras and reflection equation”, Adv. Theor. Math. Phys., 18:1 (2014), 1–25 | DOI | MR | Zbl