Regularization of Mickelsson generators for nonexceptional quantum groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 307-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak{g}'\subset\mathfrak{g}$ be a pair of Lie algebras of either symplectic or orthogonal infinitesimal endomorphisms of the complex vector spaces $\mathbb C^{N-2}\subset\mathbb C^N$ and $U_q(\mathfrak{g}')\subset U_q(\mathfrak{g})$ be a pair of quantum groups with a triangular decomposition $U_q(\mathfrak{g})=U_q(\mathfrak{g}_-)U_q(\mathfrak{g}_+) U_q(\mathfrak{h})$. Let $Z_q(\mathfrak{g},\mathfrak{g}')$ be the corresponding step algebra. We assume that its generators are rational trigonometric functions $\mathfrak{h}^*\to U_q(\mathfrak{g}_\pm)$. We describe their regularization such that the resulting generators do not vanish for any choice of the weight.
Keywords: Mickelson algebra, quantum group, regularization.
@article{TMF_2017_192_2_a8,
     author = {A. I. Mudrov},
     title = {Regularization of {Mickelsson} generators for nonexceptional quantum groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--321},
     year = {2017},
     volume = {192},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/}
}
TY  - JOUR
AU  - A. I. Mudrov
TI  - Regularization of Mickelsson generators for nonexceptional quantum groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 307
EP  - 321
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/
LA  - ru
ID  - TMF_2017_192_2_a8
ER  - 
%0 Journal Article
%A A. I. Mudrov
%T Regularization of Mickelsson generators for nonexceptional quantum groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 307-321
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/
%G ru
%F TMF_2017_192_2_a8
A. I. Mudrov. Regularization of Mickelsson generators for nonexceptional quantum groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 307-321. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/

[1] J. Mickelsson, “Step algebras of semi-simple subalgebras of Lie algebras”, Rep. Math. Phys., 4:4 (1973), 307–318 | DOI | MR | Zbl

[2] D. P. Zhelobenko, “Ekstremalnye proektory i obobschennye algebry Mikelsona nad reduktivnymi algebrami Li”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 758–773 | DOI | MR | Zbl

[3] D. P. Zhelobenko, “$S$-algebras and Verma modules over reductive Lie algebras”, Dokl. AN SSSR, 273:4 (1983), 785–788 | MR | Zbl

[4] P. Kekäläinen, “Step algebras of quantum algebras of type $A$, $B$ and $D$”, J. Phys. A: Math. Gen., 29:5 (1996), 1045–1053 | DOI | MR | Zbl

[5] S. Khoroshkin, O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319:5 (2008), 2113–2165 | DOI | MR | Zbl

[6] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Proektsionnye operatory dlya prostykh grupp Li”, TMF, 8:2 (1971), 255–271 | DOI | MR | Zbl

[7] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Proektsionnye operatory dlya prostykh grupp Li. II. Obschaya skhema postroeniya ponizhayuschikh operatorov. Sluchai grupp $SU(n)$”, TMF, 15:1 (1973), 107–119 | DOI | MR | Zbl

[8] V. N. Tolstoy, “Projection operator method for quantum groups”, Special Functions 2000: Current Perspective and Future Directions (Arizona State University, Tempe, AZ, May 29 – June 9, 2000), v. 30, NATO Science Series II: Mathematics, Physics and Chemistry, eds. J. Bustoz, M. E. H. Ismail, S. K. Suslov, Kluwer Acad. Publ., Dordrecht, 2001, 457–488 | MR

[9] A. Mudrov, “$R$-matrix and inverse Shapovalov form”, J. Math. Phys., 57:5 (2016), 051706, 10 pp., arXiv: 1412.3384 | DOI | MR | Zbl

[10] T. Ashton, A. Mudrov, “$R$-matrix and Mickelsson algebras for orthosymplectic quantum groups”, J. Math. Phys., 56:8 (2015), 081701, 8 pp. | DOI | MR | Zbl

[11] J. G. Nagel, M. Moshinsky, “Operators that lower or raise the irreducible vector spaces of $U_{n-1}$ contained in an irreducible vector space of $U_n$”, J. Math. Phys., 6:5 (1965), 682–694 | DOI | MR | Zbl

[12] P.-Y. Hou, “Orthonormal bases and infinitesimal operators of the irreducible representations of group $U_n$”, Sci. Sinica, 15 (1966), 763–772 | MR | Zbl

[13] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of Algebra, 4, ed. M. Hazewinkel, Elsevier/North-Holland, Amsterdam, 2006, 109–170 | MR

[14] K. Styrkas, V. Tarasov, A. Varchenko, “How to regularize singular vectors and kill the dynamical Weyl group”, Adv. Math., 185:1 (2004), 91–135 | DOI | MR | Zbl

[15] A. Mudrov, “Orthogonal basis for the Shapovalov form on $U_q(\mathfrak{sl}(n+1))$”, Rev. Math. Phys., 27:2 (2015), 1550004, 23 pp. | DOI | MR | Zbl

[16] V. Drinfel'd, “Quantum groups”, Proceedings of the International Congress of Mathematicians (ICM) (Berkeley, CA, August 3–11, 1986), v. 1, eds. A. M. Gleason, AMS, Providence, RI, 1987, 798–820 | MR | Zbl

[17] V. Chari, A. Pressley, A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1995 | MR

[18] T. Ashton, A. Mudrov, “Representations of quantum conjugacy classes of orthosymplectic groups”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 20–40, arXiv: 1502.02392 | DOI | MR