@article{TMF_2017_192_2_a8,
author = {A. I. Mudrov},
title = {Regularization of {Mickelsson} generators for nonexceptional quantum groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {307--321},
year = {2017},
volume = {192},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/}
}
A. I. Mudrov. Regularization of Mickelsson generators for nonexceptional quantum groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 307-321. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/
[1] J. Mickelsson, “Step algebras of semi-simple subalgebras of Lie algebras”, Rep. Math. Phys., 4:4 (1973), 307–318 | DOI | MR | Zbl
[2] D. P. Zhelobenko, “Ekstremalnye proektory i obobschennye algebry Mikelsona nad reduktivnymi algebrami Li”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 758–773 | DOI | MR | Zbl
[3] D. P. Zhelobenko, “$S$-algebras and Verma modules over reductive Lie algebras”, Dokl. AN SSSR, 273:4 (1983), 785–788 | MR | Zbl
[4] P. Kekäläinen, “Step algebras of quantum algebras of type $A$, $B$ and $D$”, J. Phys. A: Math. Gen., 29:5 (1996), 1045–1053 | DOI | MR | Zbl
[5] S. Khoroshkin, O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319:5 (2008), 2113–2165 | DOI | MR | Zbl
[6] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Proektsionnye operatory dlya prostykh grupp Li”, TMF, 8:2 (1971), 255–271 | DOI | MR | Zbl
[7] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Proektsionnye operatory dlya prostykh grupp Li. II. Obschaya skhema postroeniya ponizhayuschikh operatorov. Sluchai grupp $SU(n)$”, TMF, 15:1 (1973), 107–119 | DOI | MR | Zbl
[8] V. N. Tolstoy, “Projection operator method for quantum groups”, Special Functions 2000: Current Perspective and Future Directions (Arizona State University, Tempe, AZ, May 29 – June 9, 2000), v. 30, NATO Science Series II: Mathematics, Physics and Chemistry, eds. J. Bustoz, M. E. H. Ismail, S. K. Suslov, Kluwer Acad. Publ., Dordrecht, 2001, 457–488 | MR
[9] A. Mudrov, “$R$-matrix and inverse Shapovalov form”, J. Math. Phys., 57:5 (2016), 051706, 10 pp., arXiv: 1412.3384 | DOI | MR | Zbl
[10] T. Ashton, A. Mudrov, “$R$-matrix and Mickelsson algebras for orthosymplectic quantum groups”, J. Math. Phys., 56:8 (2015), 081701, 8 pp. | DOI | MR | Zbl
[11] J. G. Nagel, M. Moshinsky, “Operators that lower or raise the irreducible vector spaces of $U_{n-1}$ contained in an irreducible vector space of $U_n$”, J. Math. Phys., 6:5 (1965), 682–694 | DOI | MR | Zbl
[12] P.-Y. Hou, “Orthonormal bases and infinitesimal operators of the irreducible representations of group $U_n$”, Sci. Sinica, 15 (1966), 763–772 | MR | Zbl
[13] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of Algebra, 4, ed. M. Hazewinkel, Elsevier/North-Holland, Amsterdam, 2006, 109–170 | MR
[14] K. Styrkas, V. Tarasov, A. Varchenko, “How to regularize singular vectors and kill the dynamical Weyl group”, Adv. Math., 185:1 (2004), 91–135 | DOI | MR | Zbl
[15] A. Mudrov, “Orthogonal basis for the Shapovalov form on $U_q(\mathfrak{sl}(n+1))$”, Rev. Math. Phys., 27:2 (2015), 1550004, 23 pp. | DOI | MR | Zbl
[16] V. Drinfel'd, “Quantum groups”, Proceedings of the International Congress of Mathematicians (ICM) (Berkeley, CA, August 3–11, 1986), v. 1, eds. A. M. Gleason, AMS, Providence, RI, 1987, 798–820 | MR | Zbl
[17] V. Chari, A. Pressley, A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1995 | MR
[18] T. Ashton, A. Mudrov, “Representations of quantum conjugacy classes of orthosymplectic groups”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 20–40, arXiv: 1502.02392 | DOI | MR