Regularization of Mickelsson generators for nonexceptional quantum groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 307-321
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak{g}'\subset\mathfrak{g}$ be a pair of Lie algebras of either symplectic or orthogonal infinitesimal endomorphisms of the complex vector spaces $\mathbb C^{N-2}\subset\mathbb C^N$ and $U_q(\mathfrak{g}')\subset U_q(\mathfrak{g})$ be a pair of quantum groups with a triangular decomposition $U_q(\mathfrak{g})=U_q(\mathfrak{g}_-)U_q(\mathfrak{g}_+) U_q(\mathfrak{h})$. Let $Z_q(\mathfrak{g},\mathfrak{g}')$ be the corresponding step algebra. We assume that its generators are rational trigonometric functions $\mathfrak{h}^*\to U_q(\mathfrak{g}_\pm)$. We describe their regularization such that the resulting generators do not vanish for any choice of the weight.
Keywords:
Mickelson algebra, quantum group, regularization.
@article{TMF_2017_192_2_a8,
author = {A. I. Mudrov},
title = {Regularization of {Mickelsson} generators for nonexceptional quantum groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {307--321},
publisher = {mathdoc},
volume = {192},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/}
}
A. I. Mudrov. Regularization of Mickelsson generators for nonexceptional quantum groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 307-321. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/