Regularization of Mickelsson generators for nonexceptional quantum groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 307-321

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{g}'\subset\mathfrak{g}$ be a pair of Lie algebras of either symplectic or orthogonal infinitesimal endomorphisms of the complex vector spaces $\mathbb C^{N-2}\subset\mathbb C^N$ and $U_q(\mathfrak{g}')\subset U_q(\mathfrak{g})$ be a pair of quantum groups with a triangular decomposition $U_q(\mathfrak{g})=U_q(\mathfrak{g}_-)U_q(\mathfrak{g}_+) U_q(\mathfrak{h})$. Let $Z_q(\mathfrak{g},\mathfrak{g}')$ be the corresponding step algebra. We assume that its generators are rational trigonometric functions $\mathfrak{h}^*\to U_q(\mathfrak{g}_\pm)$. We describe their regularization such that the resulting generators do not vanish for any choice of the weight.
Keywords: Mickelson algebra, quantum group, regularization.
@article{TMF_2017_192_2_a8,
     author = {A. I. Mudrov},
     title = {Regularization of {Mickelsson} generators for nonexceptional quantum groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--321},
     publisher = {mathdoc},
     volume = {192},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/}
}
TY  - JOUR
AU  - A. I. Mudrov
TI  - Regularization of Mickelsson generators for nonexceptional quantum groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 307
EP  - 321
VL  - 192
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/
LA  - ru
ID  - TMF_2017_192_2_a8
ER  - 
%0 Journal Article
%A A. I. Mudrov
%T Regularization of Mickelsson generators for nonexceptional quantum groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 307-321
%V 192
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/
%G ru
%F TMF_2017_192_2_a8
A. I. Mudrov. Regularization of Mickelsson generators for nonexceptional quantum groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 307-321. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a8/