Quantization of the~Kadomtsev--Petviashvili equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 259-283
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose a quantization of the Kadomtsev–Petviashvili equation
on a cylinder equivalent to an infinite system of nonrelativistic
one-dimensional bosons with the masses $m=1,2,\dots$.
The Hamiltonian is Galilei-invariant and includes the split and
merge terms $\Psi^{\dagger}_{m_1}\Psi^{\dagger}_{m_2} \Psi_{m_1+m_2}$
and $\Psi^{\dagger}_{m_1+m_2}\Psi_{m_1}\Psi_{m_2}$ for all
combinations of particles with masses $m_1$, $m_2$, and $m_1+m_2$
for a special choice of coupling constants. We construct
the Bethe eigenfunctions for the model and verify the consistency
of the coordinate Bethe ansatz and hence the quantum integrability
of the model up to the mass $M=8$ sector.
Keywords:
Kadomtsev–Petviashvili equation, Bethe ansatz, integrable model.
Mots-clés : quantization
Mots-clés : quantization
@article{TMF_2017_192_2_a6,
author = {K. K. Kozlowski and E. K. Sklyanin and A. Torrielli},
title = {Quantization of {the~Kadomtsev--Petviashvili} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {259--283},
publisher = {mathdoc},
volume = {192},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/}
}
TY - JOUR AU - K. K. Kozlowski AU - E. K. Sklyanin AU - A. Torrielli TI - Quantization of the~Kadomtsev--Petviashvili equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 259 EP - 283 VL - 192 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/ LA - ru ID - TMF_2017_192_2_a6 ER -
K. K. Kozlowski; E. K. Sklyanin; A. Torrielli. Quantization of the~Kadomtsev--Petviashvili equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 259-283. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/