Quantization of the Kadomtsev–Petviashvili equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 259-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a quantization of the Kadomtsev–Petviashvili equation on a cylinder equivalent to an infinite system of nonrelativistic one-dimensional bosons with the masses $m=1,2,\dots$. The Hamiltonian is Galilei-invariant and includes the split and merge terms $\Psi^{\dagger}_{m_1}\Psi^{\dagger}_{m_2} \Psi_{m_1+m_2}$ and $\Psi^{\dagger}_{m_1+m_2}\Psi_{m_1}\Psi_{m_2}$ for all combinations of particles with masses $m_1$, $m_2$, and $m_1+m_2$ for a special choice of coupling constants. We construct the Bethe eigenfunctions for the model and verify the consistency of the coordinate Bethe ansatz and hence the quantum integrability of the model up to the mass $M=8$ sector.
Keywords: Kadomtsev–Petviashvili equation, Bethe ansatz, integrable model.
Mots-clés : quantization
@article{TMF_2017_192_2_a6,
     author = {K. K. Kozlowski and E. K. Sklyanin and A. Torrielli},
     title = {Quantization of {the~Kadomtsev{\textendash}Petviashvili} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {259--283},
     year = {2017},
     volume = {192},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/}
}
TY  - JOUR
AU  - K. K. Kozlowski
AU  - E. K. Sklyanin
AU  - A. Torrielli
TI  - Quantization of the Kadomtsev–Petviashvili equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 259
EP  - 283
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/
LA  - ru
ID  - TMF_2017_192_2_a6
ER  - 
%0 Journal Article
%A K. K. Kozlowski
%A E. K. Sklyanin
%A A. Torrielli
%T Quantization of the Kadomtsev–Petviashvili equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 259-283
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/
%G ru
%F TMF_2017_192_2_a6
K. K. Kozlowski; E. K. Sklyanin; A. Torrielli. Quantization of the Kadomtsev–Petviashvili equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 259-283. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/

[1] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations: The Inverse Spectral Transform in $2+1$ Dimensions, Springer, New York, 1992 | DOI | MR

[2] S. V. Manakov, P. M. Santini, “On the solutions of the dKP equation: the nonlinear Riemann–Hilbert problem, longtime behaviour, implicit solutions and wave breaking”, J. Phys. A: Math. Theor., 41:5 (2008), 055204, 23 pp. | DOI | MR | Zbl

[3] V. G. Kac, A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Series in Mathematical Physics, 2, World Sci., Singapore, 1987 | MR | Zbl

[4] T. D. Lee, “Some special examples in renormalizable field theory”, Phys. Rev. (2), 95:5 (1954), 1329–1334 | DOI | MR | Zbl

[5] P. P. Kulish, “Quantum nonlinear wave interaction system”, Physica D: Nonlin. Phen., 18:1–3 (1986), 360–364 | DOI | MR | Zbl

[6] E. K. Sklyanin, “Quantization of the continuous Heisenberg ferromagnet”, Lett. Math. Phys., 15:4 (1988), 357–368 | DOI | MR | Zbl

[7] E. K. Sklyanin, “Quantum version of the method of inverse scattering problem”, J. Soviet Math., 19:5 (1982), 1546–1596 | DOI | Zbl

[8] K. M. Case, “‘Polynomial constants’ for the quantized NLS equation”, J. Math. Phys., 25:7 (1984), 2306–2314 | DOI | MR

[9] B. Davies, V. Korepin, Higher conservation laws for the quantum non-linear Schrödinger equation, arXiv: 1109.6604

[10] E. Gutkin, “Conservation laws for the nonlinear Schrödinger equation”, Ann. H. Poincaré Anal. Non Linéaire, 2:1 (1985), 67–74 | MR

[11] R. P. Stanley, S. Fomin, Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics, 2, Cambridge Univ. Press, Cambridge, 1999 | DOI | Zbl

[12] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 1993 | DOI

[13] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | DOI | MR

[14] E. H. Lieb, W. Liniger, “Exact analysis of an interacting Bose gas. I. The general solution and the ground state”, Phys. Rev. (2), 130:4 (1963), 1605–1616 | DOI | MR | Zbl

[15] F. A. Berezin, G. P. Pokhil, B. M. Finkelberg, “Uravnenie Shredingera dlya sistemy odnomernykh chastits s tochechnym vzaimodeistviem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 1, 21–28 | MR

[16] P. P. Kulish, S. V. Manakov, L. D. Faddeev, “Sravnenie tochnykh kvantovykh i kvaziklassicheskikh otvetov dlya nelineinogo uravneniya Shredingera”, TMF, 28:1 (1976), 38–45 | DOI | MR

[17] K. K. Kozlowski, E. K. Sklyanin, “Combinatorics of generalized Bethe equations”, Lett. Math. Phys., 103:10 (2013), 1047–1077, arXiv: 1205.2968 | DOI | Zbl

[18] A. V. Litvinov, “On spectrum of ILW hierarchy in conformal field theory”, JHEP, 11 (2013), 155, 13 pp., arXiv: 1307.8094 | DOI | MR | Zbl

[19] A. E. Arinshtein, V. A. Fateyev, A. B. Zamolodchikov, “Quantum ${S}$-matrix of the $(1+1)$-dimensional Toda chain”, Phys. Lett. B, 87:4 (1979), 389–392 | DOI

[20] H. Braden, E. Corrigan, P. E. Dorey, R. Sasaki, “Affine Toda field theory and exact $S$-matrices”, Nucl. Phys. B, 338:3 (1990), 689–746 | DOI | MR | Zbl