Mots-clés : quantization
@article{TMF_2017_192_2_a6,
author = {K. K. Kozlowski and E. K. Sklyanin and A. Torrielli},
title = {Quantization of {the~Kadomtsev{\textendash}Petviashvili} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {259--283},
year = {2017},
volume = {192},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/}
}
TY - JOUR AU - K. K. Kozlowski AU - E. K. Sklyanin AU - A. Torrielli TI - Quantization of the Kadomtsev–Petviashvili equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 259 EP - 283 VL - 192 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/ LA - ru ID - TMF_2017_192_2_a6 ER -
K. K. Kozlowski; E. K. Sklyanin; A. Torrielli. Quantization of the Kadomtsev–Petviashvili equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 259-283. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a6/
[1] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations: The Inverse Spectral Transform in $2+1$ Dimensions, Springer, New York, 1992 | DOI | MR
[2] S. V. Manakov, P. M. Santini, “On the solutions of the dKP equation: the nonlinear Riemann–Hilbert problem, longtime behaviour, implicit solutions and wave breaking”, J. Phys. A: Math. Theor., 41:5 (2008), 055204, 23 pp. | DOI | MR | Zbl
[3] V. G. Kac, A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Series in Mathematical Physics, 2, World Sci., Singapore, 1987 | MR | Zbl
[4] T. D. Lee, “Some special examples in renormalizable field theory”, Phys. Rev. (2), 95:5 (1954), 1329–1334 | DOI | MR | Zbl
[5] P. P. Kulish, “Quantum nonlinear wave interaction system”, Physica D: Nonlin. Phen., 18:1–3 (1986), 360–364 | DOI | MR | Zbl
[6] E. K. Sklyanin, “Quantization of the continuous Heisenberg ferromagnet”, Lett. Math. Phys., 15:4 (1988), 357–368 | DOI | MR | Zbl
[7] E. K. Sklyanin, “Quantum version of the method of inverse scattering problem”, J. Soviet Math., 19:5 (1982), 1546–1596 | DOI | Zbl
[8] K. M. Case, “‘Polynomial constants’ for the quantized NLS equation”, J. Math. Phys., 25:7 (1984), 2306–2314 | DOI | MR
[9] B. Davies, V. Korepin, Higher conservation laws for the quantum non-linear Schrödinger equation, arXiv: 1109.6604
[10] E. Gutkin, “Conservation laws for the nonlinear Schrödinger equation”, Ann. H. Poincaré Anal. Non Linéaire, 2:1 (1985), 67–74 | MR
[11] R. P. Stanley, S. Fomin, Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics, 2, Cambridge Univ. Press, Cambridge, 1999 | DOI | Zbl
[12] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 1993 | DOI
[13] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | DOI | MR
[14] E. H. Lieb, W. Liniger, “Exact analysis of an interacting Bose gas. I. The general solution and the ground state”, Phys. Rev. (2), 130:4 (1963), 1605–1616 | DOI | MR | Zbl
[15] F. A. Berezin, G. P. Pokhil, B. M. Finkelberg, “Uravnenie Shredingera dlya sistemy odnomernykh chastits s tochechnym vzaimodeistviem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 1, 21–28 | MR
[16] P. P. Kulish, S. V. Manakov, L. D. Faddeev, “Sravnenie tochnykh kvantovykh i kvaziklassicheskikh otvetov dlya nelineinogo uravneniya Shredingera”, TMF, 28:1 (1976), 38–45 | DOI | MR
[17] K. K. Kozlowski, E. K. Sklyanin, “Combinatorics of generalized Bethe equations”, Lett. Math. Phys., 103:10 (2013), 1047–1077, arXiv: 1205.2968 | DOI | Zbl
[18] A. V. Litvinov, “On spectrum of ILW hierarchy in conformal field theory”, JHEP, 11 (2013), 155, 13 pp., arXiv: 1307.8094 | DOI | MR | Zbl
[19] A. E. Arinshtein, V. A. Fateyev, A. B. Zamolodchikov, “Quantum ${S}$-matrix of the $(1+1)$-dimensional Toda chain”, Phys. Lett. B, 87:4 (1979), 389–392 | DOI
[20] H. Braden, E. Corrigan, P. E. Dorey, R. Sasaki, “Affine Toda field theory and exact $S$-matrices”, Nucl. Phys. B, 338:3 (1990), 689–746 | DOI | MR | Zbl