Second-order evaluations of orthogonal and symplectic Yangians
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 250-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Orthogonal or symplectic Yangians are defined by the Yang–Baxter $RLL$ relation involving the fundamental $R$-matrix with the corresponding $so(n)$ or $sp(2m)$ symmetry. We investigate the second-order solution conditions, where the expansion of $L(u)$ in $u^{-1}$ is truncated at the second power, and we derive the relations for the two nontrivial terms in $L(u)$.
Keywords: integrable systems, Yang–Baxter relation, symplectic Lie algebra, truncated Yangian.
Mots-clés : orthogonal Lie algebra
@article{TMF_2017_192_2_a5,
     author = {D. R. Karakhanyan and R. Kirshner},
     title = {Second-order evaluations of orthogonal and symplectic {Yangians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {250--258},
     year = {2017},
     volume = {192},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a5/}
}
TY  - JOUR
AU  - D. R. Karakhanyan
AU  - R. Kirshner
TI  - Second-order evaluations of orthogonal and symplectic Yangians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 250
EP  - 258
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a5/
LA  - ru
ID  - TMF_2017_192_2_a5
ER  - 
%0 Journal Article
%A D. R. Karakhanyan
%A R. Kirshner
%T Second-order evaluations of orthogonal and symplectic Yangians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 250-258
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a5/
%G ru
%F TMF_2017_192_2_a5
D. R. Karakhanyan; R. Kirshner. Second-order evaluations of orthogonal and symplectic Yangians. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 250-258. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a5/

[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR

[2] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, “Lokalnye gamiltoniany dlya integriruemykh kvantovykh modelei na reshetke”, TMF, 57:2 (1983), 163–181 | DOI | MR

[3] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories (Tvärminne, Finland, 23-27 March, 1981), Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin, Heidelberg, 1982, 61–119 | DOI | MR | Zbl

[4] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Quantum Symmetries/Symétries Quantiques, Lectures given at the Les Houches Summer School on Theoretical Physics, Session LXIV (Les Houches, France, 1 August – 8 September, 1995), eds. A. Connes, K. Kawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–211, arXiv: hep-th/9605187 | MR | Zbl

[5] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR. Cer. fiz., 283:5 (1985), 1060–1064 | MR | Zbl

[6] V. G. Drinfeld, “Kvantovye gruppy”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauchn. sem. LOMI, 155, Nauka, L., 1986, 18–49 | DOI | MR | Zbl

[7] A. B. Zamolodchikov, Al. B. Zamolodchikov, “Factorized $S$-Matrices in two-dimensions as the exact solutions of certain relativistic quantum field models”, Ann. Phys., 120:2 (1979), 253–291 | DOI | MR

[8] B. Berg, M. Karowski, P. Weisz, V. Kurak, “Factorized $U(n)$ symmetric $S$ matrices in two-dimensions”, Nucl. Phys. B, 134:1 (1978), 125–132 | DOI | MR

[9] N. Yu. Reshetikhin, “Integriruemye modeli kvantovykh odnomernykh magnetikov s $O(n)$- i $Sp(2k)$-simmetriei”, TMF, 63:3 (1985), 347–366 | DOI | MR

[10] A. P. Isaev, Quantum groups and Yang–Baxter equations, preprint 2004-132, Max-Plank-Institut für Mathematik, Bonn, 2004,\par http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf

[11] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[12] R. Shankar, E. Witten, “The $S$ matrix of the kinks of the ($gy\psi)^2$ model”, Nucl. Phys. B, 141:4 (1978), 349–363 ; Erratum, 148:3–4 (1979), 538–539 | DOI | DOI

[13] D. Chicherin, S. Derkachov, A. P. Isaev, “Conformal group: $R$-matrix and star-triangle relation”, JHEP, 04 (2013), 020, 49 pp., arXiv: 1206.4150 | DOI | MR

[14] A. P. Isaev, D. Karakhanyan, R. Kirschner, “Orthogonal and symplectic Yangians and Yang–Baxter $R$ operators”, Nucl. Phys. B, 904 (2016), 124–147, arXiv: 1511.06152 | DOI | MR

[15] D. Karakhanyan, R. Kirschner, “Yang–Baxter relations with orthogonal or symplectic symmetry”, J. Phys. Conf. Ser., 670:1 (2016), 012029, 7 pp. | DOI