@article{TMF_2017_192_2_a4,
author = {A. V. Zabrodin and A. V. Zotov and A. N. Liashyk and D. S. Rudneva},
title = {Asymmetric six-vertex model and the~classical {Ruijsenaars{\textendash}Schneider} system of particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {235--249},
year = {2017},
volume = {192},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a4/}
}
TY - JOUR AU - A. V. Zabrodin AU - A. V. Zotov AU - A. N. Liashyk AU - D. S. Rudneva TI - Asymmetric six-vertex model and the classical Ruijsenaars–Schneider system of particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 235 EP - 249 VL - 192 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a4/ LA - ru ID - TMF_2017_192_2_a4 ER -
%0 Journal Article %A A. V. Zabrodin %A A. V. Zotov %A A. N. Liashyk %A D. S. Rudneva %T Asymmetric six-vertex model and the classical Ruijsenaars–Schneider system of particles %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 235-249 %V 192 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a4/ %G ru %F TMF_2017_192_2_a4
A. V. Zabrodin; A. V. Zotov; A. N. Liashyk; D. S. Rudneva. Asymmetric six-vertex model and the classical Ruijsenaars–Schneider system of particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 235-249. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a4/
[1] A. Alexandrov, V. Kazakov, S. Leurent, Z. Tsuboi, A. Zabrodin, “Classical tau-function for quantum spin chains”, JHEP, 09 (2013), 064, 64 pp. | DOI | MR
[2] A. Alexandrov, S. Leurent, Z. Tsuboi, A. Zabrodin, “The master $T$-operator for the Gaudin model and the KP hierarchy”, Nucl. Phys. B, 883 (2014), 173–223 | DOI | MR
[3] A. Gorsky, A. Zabrodin, A. Zotov, “Spectrum of quantum transfer matrices via classical many-body systems”, JHEP, 01 (2014), 070, 27 pp. | DOI | MR
[4] A. Zabrodin, “Quantum spin chains and integrable many-body systems of classical mechanics”, Nonlinear Mathematical Physics and Natural Hazards (Sofia, Bulgaria, 28 November – 2 December, 2013), Springer Proceedings in Physics, 163, eds. B. Aneva, M. Kouteva-Guentcheva, Springer, Cham, 2015, 29–48 | DOI | Zbl
[5] Z. Tsuboi, A. Zabrodin, A. Zotov, “Supersymmetric quantum spin chains and classical integrable systems”, JHEP, 05 (2015), 086, 42 pp. | DOI | MR
[6] E. Mukhin, V. Tarasov, A. Varchenko, “KZ characteristic variety as the zero set of classical Calogero–Moser Hamiltonians”, SIGMA, 8 (2012), 072, 11 pp. | DOI | MR | Zbl
[7] N. Nekrasov, A. Rosly, S. Shatashvili, “Darboux coordinates, Yang–Yang functional, and gauge theory”, Nucl. Phys. B Proc. Suppl., 216:1 (2011), 69–93 | DOI | MR
[8] A. V. Zabrodin, “Upravlyayuschii $T$-operator dlya vershinnykh modelei s trigonometricheskimi $R$-matritsami kak klassicheskaya $\tau$-funktsiya”, TMF, 174:1 (2013), 59–76 | DOI | DOI | MR | Zbl
[9] M. Beketov, A. Liashyk, A. Zabrodin, A. Zotov, “Trigonometric version of quantum-classical duality in integrable systems”, Nucl. Phys. B, 903 (2016), 150–163 | DOI | MR | Zbl
[10] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl
[11] N. Reshetikhin, “Lectures on integrability of the six-vertex model”, Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing (École d'été de Physique des Houches, session LXXXIX, 30 June – 1 August, 2008), eds. J. Jacobsen, S. Ouvry, V. Pasquier, D. Serban, L. F. Cugliandolo, Oxford Univ. Press, Oxford, 2010, 197–266 | MR | Zbl
[12] B. Brubaker, D. Bump, S. Friedberg, “Schur Polynomials and the Yang–Baxter equation”, Commun. Math. Phys., 308:2 (2011), 281–301 | DOI | MR | Zbl
[13] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | DOI | MR
[14] F. H. L. Essler, V. Rittenberg, “Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries”, J. Phys. A: Math. Gen., 29:13 (1996), 3375–3407 | DOI | MR | Zbl
[15] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR
[16] S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR
[17] G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical $R$-matrix”, J. Phys. A: Math. Theor., 47:30 (2014), 305207, 19 pp. | DOI | MR | Zbl
[18] A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, JHEP, 07 (2014), 012, 38 pp. | DOI
[19] A. Antonov, K. Hasegawa, A. Zabrodin, “On trigonometric intertwining vectors and non-dynamical $R$-matrix for the Ruijsenaars model”, Nucl. Phys. B, 503:3 (1997), 747–770 | DOI | MR
[20] A. Matsuo, “Integrable connections related to zonal spherical function”, Invent. Math., 110:1 (1992), 95–121 | DOI | MR | Zbl
[21] I. Cherednik, “Integration of quantum many-body problems by affine Knizhnik–Zamolodchikov equations”, Adv. Math., 106:1 (1994), 65–95 | DOI | MR | Zbl