Renormalization scenario for the quantum Yang–Mills theory in four-dimensional space–time
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 227-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the renormalization of the Yang–Mills theory in four-dimensional space–time using the background-field formalism.
Keywords: quantum theory of Yang–Mills fields, effective action, renormalization.
@article{TMF_2017_192_2_a3,
     author = {S. \`E. Derkachev and A. V. Ivanov and L. D. Faddeev},
     title = {Renormalization scenario for the~quantum {Yang{\textendash}Mills} theory in four-dimensional space{\textendash}time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {227--234},
     year = {2017},
     volume = {192},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a3/}
}
TY  - JOUR
AU  - S. È. Derkachev
AU  - A. V. Ivanov
AU  - L. D. Faddeev
TI  - Renormalization scenario for the quantum Yang–Mills theory in four-dimensional space–time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 227
EP  - 234
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a3/
LA  - ru
ID  - TMF_2017_192_2_a3
ER  - 
%0 Journal Article
%A S. È. Derkachev
%A A. V. Ivanov
%A L. D. Faddeev
%T Renormalization scenario for the quantum Yang–Mills theory in four-dimensional space–time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 227-234
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a3/
%G ru
%F TMF_2017_192_2_a3
S. È. Derkachev; A. V. Ivanov; L. D. Faddeev. Renormalization scenario for the quantum Yang–Mills theory in four-dimensional space–time. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 227-234. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a3/

[1] L. D. Faddeev, “Scenario for the renormalization in the 4D Yang–Mills theory”, Internat. J. Modern Phys. A, 31:1 (2016), 1630001, 5 pp., arXiv: 1509.06186 | DOI | MR | Zbl

[2] B. S. DeWitt, “Quantum theory of gravity. II. The manifestly covariant theory”, Phys. Rev., 162:5 (1967), 1195–1239 ; “Quantum theory of gravity. III. Applications of the covariant theory”, Ibid, 1239–1256 | DOI | Zbl | DOI

[3] G. 't Hooft, “The background field method in gauge field theories”, Functional and Probabilistic Methods in Quantum Field Theory (Karpacz, 1975), Acta Universitatis Wratislaviensis, 1, no. 368, ed. B. Jancewicz, Wroclaw Univ., Wroclaw, 1976, 345–369

[4] L. F. Abbott, “Introduction to the background field method”, Acta Phys. Polon. B, 13:1–2 (1982), 33–50 | MR

[5] I. Ya. Arefeva, A. A. Slavnov, L. D. Faddeev, “Proizvodyaschii funktsional dlya $S$-matritsy v kalibrovochno-invariantnykh teoriyakh”, TMF, 21:3 (1974), 311–321 | DOI

[6] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR | MR | Zbl

[7] L. D. Faddeev, “Mass in Quantum Yang–Mills theory (comment on a Clay millenium problem)”, Bull. Braz. Math. Soc. (N. S.), 33:2 (2002), 201–212, arXiv: 0911.1013 | DOI | MR

[8] V. A. Fok, “Sobstvennoe vremya v klassicheskoi i kvantovoi mekhanike”, Izv. AN SSSR. Cer. fiz., 4–5 (1937), 551–568 | Zbl