Remark on the reflection coefficient in the Liouville model
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 221-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the reflection coefficients in the quantum theory of the Liouville model calculated in the bootstrap and Hamiltonian approaches differ from each other by a phase factor and simply yield different normalizations of vertex operators.
Mots-clés : Liouvile quantum model
Keywords: conformal bootstrap, conformal field theory.
@article{TMF_2017_192_2_a2,
     author = {S. \`E. Derkachev and L. D. Faddeev},
     title = {Remark on the~reflection coefficient in {the~Liouville} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {221--226},
     year = {2017},
     volume = {192},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a2/}
}
TY  - JOUR
AU  - S. È. Derkachev
AU  - L. D. Faddeev
TI  - Remark on the reflection coefficient in the Liouville model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 221
EP  - 226
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a2/
LA  - ru
ID  - TMF_2017_192_2_a2
ER  - 
%0 Journal Article
%A S. È. Derkachev
%A L. D. Faddeev
%T Remark on the reflection coefficient in the Liouville model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 221-226
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a2/
%G ru
%F TMF_2017_192_2_a2
S. È. Derkachev; L. D. Faddeev. Remark on the reflection coefficient in the Liouville model. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 221-226. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a2/

[1] A B. Zamolodchikov, Al. B. Zamolodchikov, “Conformal bootstrap in Liouville field theory”, Nucl. Phys. B, 477:2 (1996), 577–605 ; Structure constants and conformal bootstrap in Liouville field theory, arXiv: hep-th/9506136 | DOI | MR

[2] L. D. Faddeev, L. A. Takhtajan, “Liouville model on the lattice”, Field Theory, Quantum Gravity and Strings (Observatoire de Meudon, and LPTHE, Université Pierre et Marie Curie, Paris, 1984–1985), Lecture Notes in Physics, 246, eds. H. J. de Vega, N. Sanchez, Springer, Berlin, 1986, 166–179 | DOI | MR

[3] J. Teschner, “Liouville theory revisited”, Class. Quantum Grav., 18:23 (2001), R153–R222, arXiv: hep-th/0104158 | DOI | MR | Zbl

[4] L. D. Faddeev, A. Yu. Volkov, “Discrete evolution for the zero-modes of the quantum Liouville model”, J. Phys. A, 41:19 (2008), 194008, 12 pp., arXiv: 0803.0230 | DOI | MR | Zbl

[5] L. D. Faddeev, “Nulevye mody dlya kvantovoi modeli Liuvillya”, Funkts. analiz i ego pril., 48:3 (2014), 14–23, arXiv: 1404.1713 | DOI | DOI | MR | Zbl