A new generalized Wick theorem in conformal field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 335-347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a new generalized Wick theorem for interacting fields in two-dimensional conformal field theory and briefly discuss its relation to the Borcherds identity and its derivation by an analytic method. We give examples of calculating operator product expansions using the generalized Wick theorem including fermionic fields.
Keywords: operator product expansion, vertex algebra, Borcherds identity, fermionic field.
@article{TMF_2017_192_2_a10,
     author = {T. Takagi},
     title = {A~new generalized {Wick} theorem in conformal field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {335--347},
     year = {2017},
     volume = {192},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a10/}
}
TY  - JOUR
AU  - T. Takagi
TI  - A new generalized Wick theorem in conformal field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 335
EP  - 347
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a10/
LA  - ru
ID  - TMF_2017_192_2_a10
ER  - 
%0 Journal Article
%A T. Takagi
%T A new generalized Wick theorem in conformal field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 335-347
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a10/
%G ru
%F TMF_2017_192_2_a10
T. Takagi. A new generalized Wick theorem in conformal field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 335-347. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a10/

[1] F. A. Bais, P. Bouwknegt, M. Surridge, K. Schoutens, “Extensions of the Virasoro algebra constructed from Kac–Moody algebras using higher order Casimir invariants”, Nucl. Phys. B, 304:2 (1988), 348–370 | DOI | MR | Zbl

[2] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer, New York, 1997 | DOI | MR

[3] T. Takagi, T. Yoshikawa, Generalized Wick theorems in conformal field theory and the Borcherds identity, arXiv: 1604.04032

[4] A. Matsuo, K. Nagatomo, Axioms for a Vertex Algebra and the Locality of Quantum Fields, Mathematical Society of Japan Memoirs, 4, The Mathematical Society of Japan, Tokyo, 1999, arXiv: hep-th/9706118 | DOI | MR | Zbl

[5] R. E. Borcherds, “Vertex algebras, Kac–Moody algebras and the Monster”, Proc. Nat. Acad. Sci. USA, 83:10 (1986), 3068–3071 | DOI | MR

[6] V. G. Kats, Verteksnye algebry dlya nachinayuschikh, MTsNMO, M., 2005 | MR

[7] K. Bekker, M. Bekker, Dzh. Shvarts, Teoriya strun i M-teoriya. Sovremennoe vvedenie, RKhD, Izhevsk, 2015 | MR

[8] R. Blumenhagen, E. Plauschinn, Introduction to Conformal Field Theory. With Applications to String Theory, Lecture Notes in Physics, 779, Springer, Berlin, Heidelberg, 2009 | DOI | MR

[9] Y. Yamada, Conformal Field Theory, Baifukan, Tokyo, 2006 (in Japanese)