@article{TMF_2017_192_2_a10,
author = {T. Takagi},
title = {A~new generalized {Wick} theorem in conformal field theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {335--347},
year = {2017},
volume = {192},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a10/}
}
T. Takagi. A new generalized Wick theorem in conformal field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 2, pp. 335-347. http://geodesic.mathdoc.fr/item/TMF_2017_192_2_a10/
[1] F. A. Bais, P. Bouwknegt, M. Surridge, K. Schoutens, “Extensions of the Virasoro algebra constructed from Kac–Moody algebras using higher order Casimir invariants”, Nucl. Phys. B, 304:2 (1988), 348–370 | DOI | MR | Zbl
[2] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer, New York, 1997 | DOI | MR
[3] T. Takagi, T. Yoshikawa, Generalized Wick theorems in conformal field theory and the Borcherds identity, arXiv: 1604.04032
[4] A. Matsuo, K. Nagatomo, Axioms for a Vertex Algebra and the Locality of Quantum Fields, Mathematical Society of Japan Memoirs, 4, The Mathematical Society of Japan, Tokyo, 1999, arXiv: hep-th/9706118 | DOI | MR | Zbl
[5] R. E. Borcherds, “Vertex algebras, Kac–Moody algebras and the Monster”, Proc. Nat. Acad. Sci. USA, 83:10 (1986), 3068–3071 | DOI | MR
[6] V. G. Kats, Verteksnye algebry dlya nachinayuschikh, MTsNMO, M., 2005 | MR
[7] K. Bekker, M. Bekker, Dzh. Shvarts, Teoriya strun i M-teoriya. Sovremennoe vvedenie, RKhD, Izhevsk, 2015 | MR
[8] R. Blumenhagen, E. Plauschinn, Introduction to Conformal Field Theory. With Applications to String Theory, Lecture Notes in Physics, 779, Springer, Berlin, Heidelberg, 2009 | DOI | MR
[9] Y. Yamada, Conformal Field Theory, Baifukan, Tokyo, 2006 (in Japanese)