Scale transformations in phase space and stretched states of a harmonic oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 164-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider scale transformations $(q,p)\to(\lambda q,\lambda p)$ in phase space. They induce transformations of the Husimi functions $H(q,p)$ defined in this space. We consider the Husimi functions for states that are arbitrary superpositions of $n$-particle states of a harmonic oscillator. We develop a method that allows finding so-called stretched states to which these superpositions transform under such a scale transformation. We study the properties of the stretched states and calculate their density matrices in explicit form. We establish that the density matrix structure can be described using negative binomial distributions. We find expressions for the energy and entropy of stretched states and calculate the means of the number-of-states operator. We give the form of the Heisenberg and Robertson–Schrödinger uncertainty relations for stretched states.
Keywords: phase space, Husimi function, harmonic oscillator, stretched state, uncertainty relation.
Mots-clés : scale transformation
@article{TMF_2017_192_1_a8,
     author = {V. A. Andreev and D. M. Davidovi\'c and L. D. Davidovi\'c and Milena D. Davidovi\'c and Milo\v{s} D. Davidovi\'c},
     title = {Scale transformations in phase space and stretched states of a~harmonic oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {164--184},
     year = {2017},
     volume = {192},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a8/}
}
TY  - JOUR
AU  - V. A. Andreev
AU  - D. M. Davidović
AU  - L. D. Davidović
AU  - Milena D. Davidović
AU  - Miloš D. Davidović
TI  - Scale transformations in phase space and stretched states of a harmonic oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 164
EP  - 184
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a8/
LA  - ru
ID  - TMF_2017_192_1_a8
ER  - 
%0 Journal Article
%A V. A. Andreev
%A D. M. Davidović
%A L. D. Davidović
%A Milena D. Davidović
%A Miloš D. Davidović
%T Scale transformations in phase space and stretched states of a harmonic oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 164-184
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a8/
%G ru
%F TMF_2017_192_1_a8
V. A. Andreev; D. M. Davidović; L. D. Davidović; Milena D. Davidović; Miloš D. Davidović. Scale transformations in phase space and stretched states of a harmonic oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 164-184. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a8/

[1] E. P. Wigner, “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40:5 (1932), 749–759 | DOI | Zbl

[2] K. Husimi, “Some formal properties of the density matrix”, Proc. Phys. Math. Soc. Japan. Ser. 3, 22:4 (1940), 264–314 | Zbl

[3] Y. Kano, “A new phase–space distribution function in the statistical theory of the electromagnetic field”, J. Math. Phys., 6:12 (1965), 1913–1916 | DOI | MR

[4] R. J. Glauber, “Photon correlations”, Phys. Rev. Lett., 10:3 (1963), 84–86 | DOI | MR

[5] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams”, Phys. Rev. Lett., 10:7 (1963), 277–278 | DOI | MR

[6] R. L. Stratonovich, “O raspredeleniyakh v izobrazhayuschem prostranstve”, ZhETF, 31:6 (1956), 1012–1020 | Zbl

[7] K. E. Cahill, R. J. Glauber, “Ordered expansions in boson amplitude operators”, Phys. Rev., 177:5 (1968), 1857–1881 ; “Density operators and quasiprobability distributions”, Phys. Rev., 177:5 (1969), 1882–1902 | DOI | DOI

[8] M. Hillery, R. F. O'Connell, M. O. Scully, E. P. Wigner, “Distribution functions in physics: fundamentals”, Phys. Rep., 106:3 (1984), 121–167 | DOI | MR

[9] V. I. Tatarskii, “Vignerovskoe predstavlenie kvantovoi mekhaniki”, UFN, 139:4 (1983), 587–619 | DOI | DOI

[10] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, IKI, M., Izhevsk, 2003 | DOI

[11] L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press, Cambridge, 1995

[12] M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, 1997

[13] W. P. Schleich, Quantum Optics in Phase Space, Wiley, Berlin, 2001

[14] A. B. Klimov, S. M. Chumakov, A Group-Theoretical Approach to Quantum Optics, Wiley, Weinheim, 2009

[15] S. Mancini, V. I. Man'ko, P. Tombesi, “Wigner function and probability distribution for shifted and squeezed quadratures”, Quantum Semiclass. Opt., 7:4 (1995), 615–623 ; “Symplectic tomography as classical approach to quantum systems”, Phys. Lett. A, 213:1–2 (1996), 1–6 ; “Classical-like description of quantum dynamics by means of symplectic tomography”, Found. Phys., 27:6 (1997), 801–824 | DOI | DOI | MR | Zbl | DOI | MR

[16] A. Ibort, V. I. Man'ko, G. Marmo, A. Simoni, F. Ventriglia, “An introduction to the tomographic picture of quantum mechanics”, Phys. Scr., 79:6 (2009), 065013, 29 pp. | DOI | Zbl

[17] V. A. Andreev, D. M. Davidovich, L. D. Davidovich, M. D. Davidovich, V. I. Manko, M. A. Manko, “Transformatsionnoe svoistvo funktsii Khusimi i ee svyaz s funktsiei Vignera i simplekticheskimi tomogrammami”, TMF, 166:3 (2011), 410–424 | DOI | DOI

[18] G. S. Agarwal, K. Tara, “Transformations of the nonclassical states by an optical amplifier”, Phys. Rev. A, 47:4 (1993), 3160–3166 | DOI

[19] G. S. Agarwal, S. Chaturvedi, A. Rai, “Amplification of maximally-path-entangled number states”, Phys. Rev. A, 81:4 (2010), 043843, 5 pp. | DOI

[20] V. A. Andreev, P. B. Lerner, “Supersymmetry in the Jaynes–Cummings model”, Phys. Lett. A, 134:8–9 (1989), 507–511 | DOI | MR

[21] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984 | MR | Zbl

[22] V. A. Andreev, L. D. Davidovich, Milena D. Davidovich, Milosh D. Davidovich, V. I. Manko, M. A. Manko, “Operatornyi metod vychisleniya $Q$-simvolov i ikh svyaz s simvolami Veilya–Vignera i simvolami simplekticheskikh tomogramm”, TMF, 179:2 (2014), 207–224 | DOI | DOI

[23] V. V. Dodonov, V. I. Manko, Invarianty i evolyutsiya nestatsionarnykh kvantovykh sistem, Tr. FIAN SSSR, 183, Nauka, M., 1987 | MR

[24] V. I. Vysotskii, M. V. Vysotskii, S. V. Adamenko, “Osobennosti formirovaniya i primeneniya korrelirovannykh sostoyanii v nestatsionarnykh sistemakh pri nizkoi energii vzaimodeistvuyuschikh chastits”, ZhETF, 141:2 (2012), 276–287 | DOI

[25] V. I. Vysotskii, M. V. Vysotskii, S. V. Adamenko, “Formirovanie korrelirovannykh sostoyanii i uvelichenie prozrachnosti barera pri nizkoi energii chastits v nestatsionarnykh sistemakh s dempfirovaniem i fluktuatsiyami”, ZhETF, 142:4 (2012), 627–643 | DOI

[26] V. N. Chernega, Purity dependent uncertainty relation and possible enhancement of quantum tunneling phenomenon, arXiv: 1303.5238

[27] D. M. Davidović, D. Lalović, “When does a given function in phase space belong to the class of Husimi distributions?”, J. Phys. A: Math. Gen., 26:19 (1993), 5099–5106 | DOI | MR