Mots-clés : scale transformation
@article{TMF_2017_192_1_a8,
author = {V. A. Andreev and D. M. Davidovi\'c and L. D. Davidovi\'c and Milena D. Davidovi\'c and Milo\v{s} D. Davidovi\'c},
title = {Scale transformations in phase space and stretched states of a~harmonic oscillator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {164--184},
year = {2017},
volume = {192},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a8/}
}
TY - JOUR AU - V. A. Andreev AU - D. M. Davidović AU - L. D. Davidović AU - Milena D. Davidović AU - Miloš D. Davidović TI - Scale transformations in phase space and stretched states of a harmonic oscillator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 164 EP - 184 VL - 192 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a8/ LA - ru ID - TMF_2017_192_1_a8 ER -
%0 Journal Article %A V. A. Andreev %A D. M. Davidović %A L. D. Davidović %A Milena D. Davidović %A Miloš D. Davidović %T Scale transformations in phase space and stretched states of a harmonic oscillator %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 164-184 %V 192 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a8/ %G ru %F TMF_2017_192_1_a8
V. A. Andreev; D. M. Davidović; L. D. Davidović; Milena D. Davidović; Miloš D. Davidović. Scale transformations in phase space and stretched states of a harmonic oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 164-184. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a8/
[1] E. P. Wigner, “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40:5 (1932), 749–759 | DOI | Zbl
[2] K. Husimi, “Some formal properties of the density matrix”, Proc. Phys. Math. Soc. Japan. Ser. 3, 22:4 (1940), 264–314 | Zbl
[3] Y. Kano, “A new phase–space distribution function in the statistical theory of the electromagnetic field”, J. Math. Phys., 6:12 (1965), 1913–1916 | DOI | MR
[4] R. J. Glauber, “Photon correlations”, Phys. Rev. Lett., 10:3 (1963), 84–86 | DOI | MR
[5] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams”, Phys. Rev. Lett., 10:7 (1963), 277–278 | DOI | MR
[6] R. L. Stratonovich, “O raspredeleniyakh v izobrazhayuschem prostranstve”, ZhETF, 31:6 (1956), 1012–1020 | Zbl
[7] K. E. Cahill, R. J. Glauber, “Ordered expansions in boson amplitude operators”, Phys. Rev., 177:5 (1968), 1857–1881 ; “Density operators and quasiprobability distributions”, Phys. Rev., 177:5 (1969), 1882–1902 | DOI | DOI
[8] M. Hillery, R. F. O'Connell, M. O. Scully, E. P. Wigner, “Distribution functions in physics: fundamentals”, Phys. Rep., 106:3 (1984), 121–167 | DOI | MR
[9] V. I. Tatarskii, “Vignerovskoe predstavlenie kvantovoi mekhaniki”, UFN, 139:4 (1983), 587–619 | DOI | DOI
[10] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, IKI, M., Izhevsk, 2003 | DOI
[11] L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press, Cambridge, 1995
[12] M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, 1997
[13] W. P. Schleich, Quantum Optics in Phase Space, Wiley, Berlin, 2001
[14] A. B. Klimov, S. M. Chumakov, A Group-Theoretical Approach to Quantum Optics, Wiley, Weinheim, 2009
[15] S. Mancini, V. I. Man'ko, P. Tombesi, “Wigner function and probability distribution for shifted and squeezed quadratures”, Quantum Semiclass. Opt., 7:4 (1995), 615–623 ; “Symplectic tomography as classical approach to quantum systems”, Phys. Lett. A, 213:1–2 (1996), 1–6 ; “Classical-like description of quantum dynamics by means of symplectic tomography”, Found. Phys., 27:6 (1997), 801–824 | DOI | DOI | MR | Zbl | DOI | MR
[16] A. Ibort, V. I. Man'ko, G. Marmo, A. Simoni, F. Ventriglia, “An introduction to the tomographic picture of quantum mechanics”, Phys. Scr., 79:6 (2009), 065013, 29 pp. | DOI | Zbl
[17] V. A. Andreev, D. M. Davidovich, L. D. Davidovich, M. D. Davidovich, V. I. Manko, M. A. Manko, “Transformatsionnoe svoistvo funktsii Khusimi i ee svyaz s funktsiei Vignera i simplekticheskimi tomogrammami”, TMF, 166:3 (2011), 410–424 | DOI | DOI
[18] G. S. Agarwal, K. Tara, “Transformations of the nonclassical states by an optical amplifier”, Phys. Rev. A, 47:4 (1993), 3160–3166 | DOI
[19] G. S. Agarwal, S. Chaturvedi, A. Rai, “Amplification of maximally-path-entangled number states”, Phys. Rev. A, 81:4 (2010), 043843, 5 pp. | DOI
[20] V. A. Andreev, P. B. Lerner, “Supersymmetry in the Jaynes–Cummings model”, Phys. Lett. A, 134:8–9 (1989), 507–511 | DOI | MR
[21] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984 | MR | Zbl
[22] V. A. Andreev, L. D. Davidovich, Milena D. Davidovich, Milosh D. Davidovich, V. I. Manko, M. A. Manko, “Operatornyi metod vychisleniya $Q$-simvolov i ikh svyaz s simvolami Veilya–Vignera i simvolami simplekticheskikh tomogramm”, TMF, 179:2 (2014), 207–224 | DOI | DOI
[23] V. V. Dodonov, V. I. Manko, Invarianty i evolyutsiya nestatsionarnykh kvantovykh sistem, Tr. FIAN SSSR, 183, Nauka, M., 1987 | MR
[24] V. I. Vysotskii, M. V. Vysotskii, S. V. Adamenko, “Osobennosti formirovaniya i primeneniya korrelirovannykh sostoyanii v nestatsionarnykh sistemakh pri nizkoi energii vzaimodeistvuyuschikh chastits”, ZhETF, 141:2 (2012), 276–287 | DOI
[25] V. I. Vysotskii, M. V. Vysotskii, S. V. Adamenko, “Formirovanie korrelirovannykh sostoyanii i uvelichenie prozrachnosti barera pri nizkoi energii chastits v nestatsionarnykh sistemakh s dempfirovaniem i fluktuatsiyami”, ZhETF, 142:4 (2012), 627–643 | DOI
[26] V. N. Chernega, Purity dependent uncertainty relation and possible enhancement of quantum tunneling phenomenon, arXiv: 1303.5238
[27] D. M. Davidović, D. Lalović, “When does a given function in phase space belong to the class of Husimi distributions?”, J. Phys. A: Math. Gen., 26:19 (1993), 5099–5106 | DOI | MR