Matrix model and dimensions at hypercube vertices
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 115-163
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider correlation functions in the Chern–Simons theory (knot polynomials) using an approach in which each knot diagram is associated with a hypercube. The number of cycles into which the link diagram is decomposed under different resolutions plays a central role. Certain functions of these numbers are further interpreted as dimensions of graded spaces associated with hypercube vertices, but finding these functions is a somewhat nontrivial problem. It was previously suggested to solve this problem using the matrix model technique by analogy with topological recursion. We develop this idea and provide a wide collection of nontrivial examples related to both ordinary and virtual knots and links. The most powerful version of the formalism freely connects ordinary knots/links with virtual ones. Moreover, it allows going beyond the limits of the knot-related set of $(2,2)$-valent graphs.
Keywords:
Chern–Simons theory, knot theory, virtual knot, matrix model.
@article{TMF_2017_192_1_a7,
author = {A. Yu. Morozov and A. A. Morozov and A. V. Popolitov},
title = {Matrix model and dimensions at hypercube vertices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {115--163},
publisher = {mathdoc},
volume = {192},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a7/}
}
TY - JOUR AU - A. Yu. Morozov AU - A. A. Morozov AU - A. V. Popolitov TI - Matrix model and dimensions at hypercube vertices JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 115 EP - 163 VL - 192 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a7/ LA - ru ID - TMF_2017_192_1_a7 ER -
A. Yu. Morozov; A. A. Morozov; A. V. Popolitov. Matrix model and dimensions at hypercube vertices. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 115-163. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a7/