Matrix model and dimensions at hypercube vertices
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 115-163

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider correlation functions in the Chern–Simons theory (knot polynomials) using an approach in which each knot diagram is associated with a hypercube. The number of cycles into which the link diagram is decomposed under different resolutions plays a central role. Certain functions of these numbers are further interpreted as dimensions of graded spaces associated with hypercube vertices, but finding these functions is a somewhat nontrivial problem. It was previously suggested to solve this problem using the matrix model technique by analogy with topological recursion. We develop this idea and provide a wide collection of nontrivial examples related to both ordinary and virtual knots and links. The most powerful version of the formalism freely connects ordinary knots/links with virtual ones. Moreover, it allows going beyond the limits of the knot-related set of $(2,2)$-valent graphs.
Keywords: Chern–Simons theory, knot theory, virtual knot, matrix model.
@article{TMF_2017_192_1_a7,
     author = {A. Yu. Morozov and A. A. Morozov and A. V. Popolitov},
     title = {Matrix model and dimensions at hypercube vertices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--163},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a7/}
}
TY  - JOUR
AU  - A. Yu. Morozov
AU  - A. A. Morozov
AU  - A. V. Popolitov
TI  - Matrix model and dimensions at hypercube vertices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 115
EP  - 163
VL  - 192
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a7/
LA  - ru
ID  - TMF_2017_192_1_a7
ER  - 
%0 Journal Article
%A A. Yu. Morozov
%A A. A. Morozov
%A A. V. Popolitov
%T Matrix model and dimensions at hypercube vertices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 115-163
%V 192
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a7/
%G ru
%F TMF_2017_192_1_a7
A. Yu. Morozov; A. A. Morozov; A. V. Popolitov. Matrix model and dimensions at hypercube vertices. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 115-163. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a7/