Keywords: maximal supersymmetry
@article{TMF_2017_192_1_a5,
author = {D. I. Kazakov and D. E. Vlasenko},
title = {Ultraviolet divergences in $D=8$ $N=1$ supersymmetric {Yang{\textendash}Mills}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {89--102},
year = {2017},
volume = {192},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a5/}
}
D. I. Kazakov; D. E. Vlasenko. Ultraviolet divergences in $D=8$ $N=1$ supersymmetric Yang–Mills. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 89-102. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a5/
[1] Z. Bern, L. J. Dixon, V. A. Smirnov, “Iteration of planar amplitudes in maximally supersymmetric Yang–Mills theory at three loops and beyond”, Phys. Rev. D, 72:8 (2005), 085001, 27 pp., arXiv: ; Z. Bern, M. Czakon, L. Dixon, D. A. Kosower, V. A. Smirnov, “the four-loop planar amplitude and cusp anomalous dimention in maximally supersymmetric Yang–Mills theory”, Phys. Rev. D, 75:8 (2007), 085010, 34 pp., arXiv: ; L. J. Dixon, J. M. Drummond, C. Duhr, J. Pennington, “The four-loop remainder function and multi-Regge behaviour at NNLLA in planar $\mathcal N=4$ super-Yang–Mills theory”, 6, 2014, 116, 58 pp., arXiv: hep-th/0505205hep-th/06102481402.3300v1 | DOI | MR | DOI | MR | DOI | MR
[2] Z. Bern, J. J. Carrasco, L. J. Dixon, M. R. Douglas, M. von Hippel, H. Johansson, “$D=5$ maximally supersymmetric Yang–Mills theory diverges at six loops”, Phys. Rev. D, 87:2 (2013), 025018, 8 pp., arXiv: 1210.7709v1 | DOI
[3] Z. Bern, J. J. M. Carrasco, H. Johansson, Progress on ultraviolet finiteness of supergravity, 2009, arXiv: ; Z. Bern, J. J. Carrasco, L. Dixon, H. Johansson, R. Roiban, “Amplitudes and ultraviolet behavior of $\mathcal N=8$ supergravity”, Fortsch. Phys., 59:7–8 (2011), 561–578, arXiv: ; H. Elvang, D. Z. Freedman, M. Kiermaier, “SUSY Ward identities, superamplitudes, and counterterms”, J. Phys. A: Math. Theor., 44:45 (2011), 454009, 33 pp., arXiv: 0902.37651103.18481012.3401v2 | DOI | MR | DOI | MR | Zbl
[4] Z. Bern, L. J. Dixon, D. A. Kosower, “On-shell methods in perturbative QCD”, Ann. Phys., 322:7 (2007), 1587–1634, arXiv: ; R. Britto, “Loop amplitudes in gauge theories: modern analytic approaches”, J. Phys. A: Math. Theor., 44:45 (2011), 454006, 28 pp., arXiv: ; Z. Bern, Y.-T. Huang, “Basics of generalized unitarity”, J. Phys. A: Math. Theor., 44:45 (2011), 454003, 32 pp., arXiv: ; H. Elvang, Y.-T. Huang, Scattering amplitudes, arXiv: 0704.27981012.44931103.18691308.1697 | MR | DOI | MR | Zbl | DOI | MR | Zbl
[5] L. V. Bork, D. I. Kazakov, D. E. Vlasenko, “Challenges of $D=6$ $\mathcal N=(1,1)$ SYM theory”, Phys. Lett. B, 734 (2014), 111–115, arXiv: 1404.6998 | DOI
[6] L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev, D. E. Vlasenko, “Divergences in maximal supersymmetric Yang–Mills theories in diverse dimensions”, JHEP, 11 (2015), 059, 38 pp., arXiv: 1508.05570 | DOI | MR
[7] A. T. Borlakov, D. I. Kazakov, D. M. Tolkachev, D. E. Vlasenko, “Summation of all-loop UV divergences in maximally supersymmetric gauge theories”, JHEP, 12 (2016), 154, 17 pp., arXiv: 1610.05549 | DOI
[8] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v kvantovuyu teoriyu polya, Nauka, M., 1984 | MR | MR
[9] O. I. Zavyalov, Perenormirovannye feinmanovskie diagrammy, Nauka, M., 1979 | MR | Zbl
[10] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998
[11] K. G. Chetyrkin, F. V. Tkachov, “Integration by parts: an algorithm to calculate $\beta$-function in 4 loops”, Nucl. Phys. B, 192:1 (1981), 159–204 ; Д. И. Казаков, “Вычисление фейнмановских интегралов методом ‘уникальностей’ ”, ТМФ, 58:3 (1984), 343–353 | DOI | MR