Ultraviolet divergences in $D=8$ $N=1$ supersymmetric Yang–Mills
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 89-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the leading and subleading UV divergences for the four-point on-shell scattering amplitudes in the $D=8$ $N=1$ supersymmetric Yang–Mills theory in the planar limit for ladder-type diagrams. We obtain recurrence relations that allow obtaining the leading and subleading divergences in all loops purely algebraically starting from the one-loop diagrams (for the leading poles) and the two-loop diagrams (for the subleading poles). We sum the leading and subleading divergences over all loops using differential equations that are generalizations of the renormalization group equations to nonrenormalizable theories. We discuss the properties of the obtained solutions and the dependence of the constructed counterterms on the scheme.
Mots-clés : amplitude, UV divergence.
Keywords: maximal supersymmetry
@article{TMF_2017_192_1_a5,
     author = {D. I. Kazakov and D. E. Vlasenko},
     title = {Ultraviolet divergences in $D=8$ $N=1$ supersymmetric {Yang{\textendash}Mills}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {89--102},
     year = {2017},
     volume = {192},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a5/}
}
TY  - JOUR
AU  - D. I. Kazakov
AU  - D. E. Vlasenko
TI  - Ultraviolet divergences in $D=8$ $N=1$ supersymmetric Yang–Mills
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 89
EP  - 102
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a5/
LA  - ru
ID  - TMF_2017_192_1_a5
ER  - 
%0 Journal Article
%A D. I. Kazakov
%A D. E. Vlasenko
%T Ultraviolet divergences in $D=8$ $N=1$ supersymmetric Yang–Mills
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 89-102
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a5/
%G ru
%F TMF_2017_192_1_a5
D. I. Kazakov; D. E. Vlasenko. Ultraviolet divergences in $D=8$ $N=1$ supersymmetric Yang–Mills. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 89-102. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a5/

[1] Z. Bern, L. J. Dixon, V. A. Smirnov, “Iteration of planar amplitudes in maximally supersymmetric Yang–Mills theory at three loops and beyond”, Phys. Rev. D, 72:8 (2005), 085001, 27 pp., arXiv: ; Z. Bern, M. Czakon, L. Dixon, D. A. Kosower, V. A. Smirnov, “the four-loop planar amplitude and cusp anomalous dimention in maximally supersymmetric Yang–Mills theory”, Phys. Rev. D, 75:8 (2007), 085010, 34 pp., arXiv: ; L. J. Dixon, J. M. Drummond, C. Duhr, J. Pennington, “The four-loop remainder function and multi-Regge behaviour at NNLLA in planar $\mathcal N=4$ super-Yang–Mills theory”, 6, 2014, 116, 58 pp., arXiv: hep-th/0505205hep-th/06102481402.3300v1 | DOI | MR | DOI | MR | DOI | MR

[2] Z. Bern, J. J. Carrasco, L. J. Dixon, M. R. Douglas, M. von Hippel, H. Johansson, “$D=5$ maximally supersymmetric Yang–Mills theory diverges at six loops”, Phys. Rev. D, 87:2 (2013), 025018, 8 pp., arXiv: 1210.7709v1 | DOI

[3] Z. Bern, J. J. M. Carrasco, H. Johansson, Progress on ultraviolet finiteness of supergravity, 2009, arXiv: ; Z. Bern, J. J. Carrasco, L. Dixon, H. Johansson, R. Roiban, “Amplitudes and ultraviolet behavior of $\mathcal N=8$ supergravity”, Fortsch. Phys., 59:7–8 (2011), 561–578, arXiv: ; H. Elvang, D. Z. Freedman, M. Kiermaier, “SUSY Ward identities, superamplitudes, and counterterms”, J. Phys. A: Math. Theor., 44:45 (2011), 454009, 33 pp., arXiv: 0902.37651103.18481012.3401v2 | DOI | MR | DOI | MR | Zbl

[4] Z. Bern, L. J. Dixon, D. A. Kosower, “On-shell methods in perturbative QCD”, Ann. Phys., 322:7 (2007), 1587–1634, arXiv: ; R. Britto, “Loop amplitudes in gauge theories: modern analytic approaches”, J. Phys. A: Math. Theor., 44:45 (2011), 454006, 28 pp., arXiv: ; Z. Bern, Y.-T. Huang, “Basics of generalized unitarity”, J. Phys. A: Math. Theor., 44:45 (2011), 454003, 32 pp., arXiv: ; H. Elvang, Y.-T. Huang, Scattering amplitudes, arXiv: 0704.27981012.44931103.18691308.1697 | MR | DOI | MR | Zbl | DOI | MR | Zbl

[5] L. V. Bork, D. I. Kazakov, D. E. Vlasenko, “Challenges of $D=6$ $\mathcal N=(1,1)$ SYM theory”, Phys. Lett. B, 734 (2014), 111–115, arXiv: 1404.6998 | DOI

[6] L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev, D. E. Vlasenko, “Divergences in maximal supersymmetric Yang–Mills theories in diverse dimensions”, JHEP, 11 (2015), 059, 38 pp., arXiv: 1508.05570 | DOI | MR

[7] A. T. Borlakov, D. I. Kazakov, D. M. Tolkachev, D. E. Vlasenko, “Summation of all-loop UV divergences in maximally supersymmetric gauge theories”, JHEP, 12 (2016), 154, 17 pp., arXiv: 1610.05549 | DOI

[8] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v kvantovuyu teoriyu polya, Nauka, M., 1984 | MR | MR

[9] O. I. Zavyalov, Perenormirovannye feinmanovskie diagrammy, Nauka, M., 1979 | MR | Zbl

[10] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998

[11] K. G. Chetyrkin, F. V. Tkachov, “Integration by parts: an algorithm to calculate $\beta$-function in 4 loops”, Nucl. Phys. B, 192:1 (1981), 159–204 ; Д. И. Казаков, “Вычисление фейнмановских интегралов методом ‘уникальностей’ ”, ТМФ, 58:3 (1984), 343–353 | DOI | MR