Oscillations of particles in the Standard Model
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 70-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct Hilbert spaces of particle states such that all neutrinos and also charged leptons and up and down quarks are united into multiplets and their components can be treated as different quantum states of a single particle. The phenomenon of neutrino oscillations arises in a theory based on the Lagrangian of the fermionic sector of the Standard Model modified according to the proposed approach.
Keywords: Standard Model, indefinite-mass state, Weyl algebra.
Mots-clés : neutrino oscillation, Poincaré group, $SU(3)$ group
@article{TMF_2017_192_1_a4,
     author = {A. E. Lobanov},
     title = {Oscillations of particles in {the~Standard} {Model}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {70--88},
     year = {2017},
     volume = {192},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a4/}
}
TY  - JOUR
AU  - A. E. Lobanov
TI  - Oscillations of particles in the Standard Model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 70
EP  - 88
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a4/
LA  - ru
ID  - TMF_2017_192_1_a4
ER  - 
%0 Journal Article
%A A. E. Lobanov
%T Oscillations of particles in the Standard Model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 70-88
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a4/
%G ru
%F TMF_2017_192_1_a4
A. E. Lobanov. Oscillations of particles in the Standard Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 70-88. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a4/

[1] F. Englert, R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett., 13:9 (1964), 321–323 | DOI | MR

[2] S. L. Glashow, “Partial-symmetries of weak interactions”, Nucl. Phys., 22:4 (1961), 579–588 ; S. Weinberg, “A model of lepton”, Phys. Rev. Lett., 19:21 (1967), 1264–1266 ; A. Salam, “Weak and electromagnetic interactions”, Elementary Particle Theory: Relativistic Groups and Analyticity, Proceedings of the 8th Nobel Symposium (Lerum, Sweden, May 19–25, 1968), ed. N. Svartholm, Wiley, New York; Almquist and Wiksell, Stockholm, 1968, 367–377 | DOI | DOI

[3] N. Cabibbo, “Unitary symmetry and leptonic decays”, Phys. Rev. Lett., 10:12 (1963), 531–533 | DOI

[4] M. Kobayashi, T. Maskawa, “$CP$-violation in the renormalizable theory of weak interac- tion”, Prog. Theor. Phys., 49:2 (1973), 652–657 | DOI

[5] K. A. Olive, K. Agashe, C. Amsler et al. (Particle Data Group), “The review of particle physics”, Chin. Phys. C, 38:9 (2014), 090001, 1676 pp. | DOI

[6] B. Pontekorvo, “Mezonii i antimezonii”, ZhETF, 33:2 (1957), 549–551

[7] Z. Maki, M. Nakagawa, S. Sakata, “Remark on the unified model of elementary particles”, Prog. Theor. Phys., 28:5 (1962), 870–880 | DOI | Zbl

[8] S. M. Bilenky, Introduction to the Physics of Massive and Mixed Neutrinos, Lecture Notes in Physics, 817, Springer, Berlin–Heidelberg, 2010 | DOI | Zbl

[9] B. Kayser, “On the quantum mechanics of neutrino oscillation”, Phys. Rev. D, 24:1 (1981), 110–116 | DOI

[10] C. Giunti, C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford Univ. Press, Oxford, 2007

[11] W. Grimus, P. Stockinger, “Real oscillations of virtual neutrinos”, Phys. Rev. D, 54:5 (1996), 3414–3419, arXiv: ; K. Kiers, N. Weiss, “Neutrino oscillations in a model with a source and detector”, Phys. Rev. D, 57:5 (1998), 3091–3105, arXiv: ; W. Grimus, P. Stockinger, S. Mohanty, “Field-theoretical approach to coherence in neutrino oscillations”, Phys. Rev. D, 59:1 (1999), 013011, 10 pp., arXiv: hep-ph/9603430hep-ph/9710289hep-ph/9807442 | DOI | DOI | DOI

[12] V. A. Naumov, D. S. Shkirmanov, “Covariant asymmetric wave packet for a field-theoretical description of neutrino oscillations”, Modern Phys. Lett. A, 30:24 (2015), 1550110, 17 pp., arXiv: 1409.4669 | DOI | MR | Zbl

[13] M. Beuthe, “Oscillations of neutrinos and mesons in quantum field theory”, Phys. Rep., 375:2–3 (2003), 105–218, arXiv: hep-ph/0109119 | DOI | MR

[14] E. Kh. Akhmedov, A. Yu. Smirnov, “Paradoxes of neutrino oscillations”, YaF, 72:8 (2009), 1417–1435, arXiv: 0905.1903 | DOI

[15] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | MR

[16] C. Giunti, C. W. Kim, U. W. Lee, “Remarks on the weak states of neutrinos”, Phys. Rev. D, 45:7 (1992), 2414–2420 ; C. Giunti, “Fock states of flavor neutrinos are unphysical”, Eur. Phys. J. C, 39:3 (2005), 377–382, arXiv: hep-ph/0312256 | DOI | DOI

[17] M. Blasone, G. Vitiello, “Quantum field theory of fermion mixing”, Ann. Phys., 244:2 (1995), 283–311 ; Erratum, 249:1 (1996), 363–364, arXiv: ; M. Blasone, P. A. Henning, G. Vitiello, “The exact formula for neutrino oscillations”, Phys. Lett. B, 451:1–2 (1999), 140–145, arXiv: ; M. Blasone, G. Vitiello, “Remarks on the neutrino oscillation formula”, Phys. Rev. D, 60:11 (1999), 111302, 5 pp., arXiv: hep-ph/9501263hep-th/9803157hep-ph/9907382 | DOI | Zbl | DOI | DOI | DOI

[18] K. Fujii, C. Habe, T. Yabuki, “Note on the field theory of neutrino mixing”, Phys. Rev. D, 59:11 (1999), 113003, 15 pp., arXiv: ; Erratum, 60:9 (1999), 099903 ; K. Fujii, C. Habe, T. Yabuki, “Remarks on flavor-neutrino propagators and oscillation formulas”, Phys. Rev. D, 64:1 (2001), 013011, 13 pp., arXiv: hep-ph/9807266hep-ph/0102001 | DOI | DOI | DOI

[19] C. M. Ho, “On neutrino flavor states”, JHEP, 12 (2012), 022, 10 pp., arXiv: 1209.3453 | DOI

[20] E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group”, Ann. of Math. (2), 40:1 (1939), 149–204 | DOI | MR | Zbl

[21] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR

[22] L. Michel, “Relations between internal symmetry and relativistic invariance”, Phys. Rev., 137:2B (1965), B405–B408 | DOI | MR

[23] R. Jost, “Eine Bemerkung zu einem ‘Letter’ von L. O'Raifeartaigh und einer Entgegnung von M. Flato und D. Sternheimer”, Helv. Phys. Acta, 39:4 (1966), 369–375 ; L. O'Raifeartaigh, “Mass differences and Lie algebras of finite order”, Phys. Rev. Lett., 14:14 (1965), 575–577 ; “Mass-splitting theorem for non-unitary group representations”, Phys. Rev., 161:5 (1967), 1571–1575 | MR | Zbl | DOI | MR | DOI | Zbl

[24] A. Barut, R. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | MR | MR

[25] A. Chakrabarti, “Exact solution of the Dirac–Pauli equation for a class of fields: Precession of polarization”, Nuovo Cimento A, 56:3 (1968), 604–624 | DOI

[26] A. E. Lobanov, “Dinamicheskoe predstavlenie operatorov dlya dirakovskoi chastitsy v ploskovolnovom pole”, TMF, 182:1 (2015), 112–123 | DOI | DOI | MR

[27] E. V. Arbuzova, A. E. Lobanov, E. M. Murchikova, “Pure quantum states of a neutrino with rotating spin in dense magnetized matter”, Phys. Rev. D, 81:4 (2010), 045001, 16 pp., arXiv: 0903.3358 | DOI

[28] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. IV, Kvantovaya elektrodinamika, Nauka, M., 1989 | MR | Zbl

[29] S. Weinberg, The Quantum Theory of Fields, Cambridge Univ. Press, Cambridge, 2000 | MR

[30] A. E. Lobanov, Particle quantum states with indefinite mass and neutrino oscillations, arXiv: 1507.01256

[31] S. M. Bilenky, B. Pontecorvo, “Lepton mixing and neutrino oscillations”, Phys. Rep., 41:4 (1978), 225–261 | DOI