Families of exact solutions for linear and nonlinear wave equations with a~variable speed of sound and their use in solving initial boundary value problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 41-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a procedure for multiplying solutions of linear and nonlinear one-dimensional wave equations, where the speed of sound can be an arbitrary function of one variable. We obtain exact solutions. We show that the functional series comprising these solutions can be used to solve initial boundary value problems. For this, we introduce a special scalar product.
Mots-clés : exact solution
Keywords: wave equation, Bäcklund transformation.
@article{TMF_2017_192_1_a2,
     author = {E. V. Trifonov},
     title = {Families of exact solutions for linear and nonlinear wave equations with a~variable speed of sound and their use in solving initial boundary value problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a2/}
}
TY  - JOUR
AU  - E. V. Trifonov
TI  - Families of exact solutions for linear and nonlinear wave equations with a~variable speed of sound and their use in solving initial boundary value problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 41
EP  - 50
VL  - 192
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a2/
LA  - ru
ID  - TMF_2017_192_1_a2
ER  - 
%0 Journal Article
%A E. V. Trifonov
%T Families of exact solutions for linear and nonlinear wave equations with a~variable speed of sound and their use in solving initial boundary value problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 41-50
%V 192
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a2/
%G ru
%F TMF_2017_192_1_a2
E. V. Trifonov. Families of exact solutions for linear and nonlinear wave equations with a~variable speed of sound and their use in solving initial boundary value problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 41-50. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a2/