Bifurcations in Kuramoto–Sivashinsky equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 23-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the local dynamics of the classical Kuramoto–Sivashinsky equation and its generalizations and study the problem of the existence and asymptotic behavior of periodic solutions and tori. The most interesting results are obtained in the so-called infinite-dimensional critical cases. Considering these cases, we construct special nonlinear partial differential equations that play the role of normal forms and whose nonlocal dynamics thus determine the behavior of solutions of the original boundary value problem.
Mots-clés : bifurcation, singular perturbation
Keywords: stability, normal form, dynamics.
@article{TMF_2017_192_1_a1,
     author = {S. A. Kashchenko},
     title = {Bifurcations in {Kuramoto{\textendash}Sivashinsky} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--40},
     year = {2017},
     volume = {192},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a1/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Bifurcations in Kuramoto–Sivashinsky equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 23
EP  - 40
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a1/
LA  - ru
ID  - TMF_2017_192_1_a1
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Bifurcations in Kuramoto–Sivashinsky equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 23-40
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a1/
%G ru
%F TMF_2017_192_1_a1
S. A. Kashchenko. Bifurcations in Kuramoto–Sivashinsky equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 23-40. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a1/

[1] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Izdatelskii dom “Intellekt”, Dolgoprudnyi, 2010

[2] D. J. Benney, “Long waves on liquid films”, J. Math. Phys., 45:1–4 (1966), 150–155 | DOI | MR | Zbl

[3] A. A. Nepomnyaschii, “Ustoichivost volnovykh rezhimov v plenke, stekayuschei po naklonnoi ploskosti”, Izv. AN SSSR. MZhG, 1974, no. 3, 28–34 | DOI

[4] V. Ya. Shkadov, “Uedinennye volny v sloe vyazkoi zhidkosti”, Izv. AN SSSR. MZhG, 1977, no. 1, 63–66 | DOI | Zbl

[5] M. V. Krishna, S. P. Lin, “Nonlinear stability of a viscous film with respect to three-dimensional side-band disturbances”, Phys. Fluids, 20 (1977), 1039–1044 | DOI | Zbl

[6] Y. Kuramoto, “Diffusion-induced chaos in reaction systems”, Progr. Theor. Phys. Supp., 64 (1978), 346–367 | DOI

[7] G. I. Sivashinsky, D. M. Michelson, “On irregular wavy flow of a liquid down a vertical plane”, Prog. Theor. Phys., 63:6 (1980), 2112–2114 | DOI

[8] Y. Kuramoto, T. Tsuzuki, “Persistent propagation of concentration waves in dissipative media far from thermal equilibrium”, Prog. Theor. Phys., 55:2 (1976), 356–369 | DOI

[9] G. I. Sivashinsky, “Instabilities, pattern formation, and turbulence in flames”, Ann. Rev. Fluid Mech., 15 (1983), 179–199 | DOI | Zbl

[10] B. Nicolaenko, B. Scheurer, R. Temam, “Some global dynamical properties of the Kuramoto–Sivashinsky equations: nonlinear stability and attractors”, Phys. D, 16:2 (1985), 155–183 | DOI | MR

[11] A. M. Arkhipov, “Analiz fazovogo portreta obobschennogo uravneniya Kuramoto–Sivashinskogo”, Differents. uravneniya, 29:6 (1993), 990–998 | Zbl

[12] A. M. Arkhipov, Yu. S. Il'yashenko, “Jump of energy from low harmonics to high ones in the multitdimensional Kuramoto–Sivashinsky equation”, Sel. Math., 13:3 (1994), 183–196 | MR | Zbl

[13] N. A. Kudryashov, “Metod razlozhenii Penleve dlya neintegriruemykh nelineinykh uravnenii”, Matem. modelirovanie, 2:12 (1990), 102–115 | MR | Zbl

[14] N. A. Kudryashov, “Tochnye resheniya nelineinykh volnovykh uravnenii, vstrechayuschikhsya v mekhanike”, PMM, 3:3 (1990), 450–456

[15] N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations”, Chaos Solitons Fractals, 24:5 (2005), 1217–1231 | DOI | MR | Zbl

[16] N. A. Kudryashov, “Exact soliton solutions of the generalized evolution equation of wave dynamics”, J. Appl. Math. Mech., 52:3 (1988), 361–365 | DOI | MR

[17] T. Kawahara, “Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation”, Phys. Rev. Lett., 51:5 (1983), 381–383 | DOI

[18] J. Topper, T. Kawahara, “Approximate equations for long nonlinear waves on a viscous fluid”, J. Phys. Soc. Japan, 44:2 (1978), 663–666 | DOI | MR

[19] H. Zhao, Sh. Tang, “Nonlinear stability and optimal decay rate for a multidimensional generalized Kuramoto–Sivashinsky system”, J. Math. Anal. Appl., 246:2 (2001), 423–445 | DOI | MR

[20] F. C. Pinto, “Nonlinear stability and dynamical properties for a Kuramoto–Sivashinsky equation in space dimension two”, Discrete Contin. Dynam. Systems, 5:1 (1999), 117–136 | DOI | MR | Zbl

[21] K.-S. Chou, “On a modified Kuramoto–Sivashinsky equation”, Differ. Integral Equ., 15:7 (2002), 863–874 | MR | Zbl

[22] V. Varlamov, “On the Kuramoto–Sivashinsky equation in a disk”, Ann. Polon. Math., 73:3 (2000), 227–256 | MR | Zbl

[23] L. Molinet, “Local dissipativity in $L^2$ for the Kuramoto–Sivashinsky equation in spatial dimension 2”, J. Dynam. Differ. Equ., 12:3 (2000), 533–556 | DOI | MR | Zbl

[24] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | MR | Zbl | Zbl

[25] Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | DOI | MR | MR | Zbl

[26] Dzh. Gugenkheimer, F. Kholms, Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, IKI, M.–Izhevsk, 2002 | MR | Zbl

[27] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | Zbl

[28] I. S. Kaschenko, S. A. Kaschenko, “Lokalnaya dinamika sistem raznostnykh i differentsialno-raznostnykh uravnenii”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 22:1 (2014), 71–92 | Zbl

[29] S. A. Kaschenko, “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | MR

[30] S. A. Kaschenko, “Normalization in the systems with small diffusion”, Internat. J. Bifurcations Chaos, 6:6 (1996), 1093–1109 | DOI | MR | Zbl

[31] I. S. Kaschenko, S. A. Kaschenko, “Kvazinormalnye formy dvukhkomponentnykh singulyarno vozmuschennykh sistem”, Dokl. RAN, 447:4 (2012), 3760–381 | DOI

[32] I. S. Kaschenko, “Multistabilnost v nelineinykh parabolicheskikh sistemakh s maloi diffuziei”, Dokl. RAN, 435:2 (2010), 164–167 | DOI

[33] A. A. Kaschenko, “Ustoichivost beguschikh voln v uravnenii Ginzburga–Landau s maloi diffuziei”, Model. i analiz inform. sistem, 18:3 (2011), 58–62