Keywords: stability, normal form, dynamics.
@article{TMF_2017_192_1_a1,
author = {S. A. Kashchenko},
title = {Bifurcations in {Kuramoto{\textendash}Sivashinsky} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {23--40},
year = {2017},
volume = {192},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a1/}
}
S. A. Kashchenko. Bifurcations in Kuramoto–Sivashinsky equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 192 (2017) no. 1, pp. 23-40. http://geodesic.mathdoc.fr/item/TMF_2017_192_1_a1/
[1] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Izdatelskii dom “Intellekt”, Dolgoprudnyi, 2010
[2] D. J. Benney, “Long waves on liquid films”, J. Math. Phys., 45:1–4 (1966), 150–155 | DOI | MR | Zbl
[3] A. A. Nepomnyaschii, “Ustoichivost volnovykh rezhimov v plenke, stekayuschei po naklonnoi ploskosti”, Izv. AN SSSR. MZhG, 1974, no. 3, 28–34 | DOI
[4] V. Ya. Shkadov, “Uedinennye volny v sloe vyazkoi zhidkosti”, Izv. AN SSSR. MZhG, 1977, no. 1, 63–66 | DOI | Zbl
[5] M. V. Krishna, S. P. Lin, “Nonlinear stability of a viscous film with respect to three-dimensional side-band disturbances”, Phys. Fluids, 20 (1977), 1039–1044 | DOI | Zbl
[6] Y. Kuramoto, “Diffusion-induced chaos in reaction systems”, Progr. Theor. Phys. Supp., 64 (1978), 346–367 | DOI
[7] G. I. Sivashinsky, D. M. Michelson, “On irregular wavy flow of a liquid down a vertical plane”, Prog. Theor. Phys., 63:6 (1980), 2112–2114 | DOI
[8] Y. Kuramoto, T. Tsuzuki, “Persistent propagation of concentration waves in dissipative media far from thermal equilibrium”, Prog. Theor. Phys., 55:2 (1976), 356–369 | DOI
[9] G. I. Sivashinsky, “Instabilities, pattern formation, and turbulence in flames”, Ann. Rev. Fluid Mech., 15 (1983), 179–199 | DOI | Zbl
[10] B. Nicolaenko, B. Scheurer, R. Temam, “Some global dynamical properties of the Kuramoto–Sivashinsky equations: nonlinear stability and attractors”, Phys. D, 16:2 (1985), 155–183 | DOI | MR
[11] A. M. Arkhipov, “Analiz fazovogo portreta obobschennogo uravneniya Kuramoto–Sivashinskogo”, Differents. uravneniya, 29:6 (1993), 990–998 | Zbl
[12] A. M. Arkhipov, Yu. S. Il'yashenko, “Jump of energy from low harmonics to high ones in the multitdimensional Kuramoto–Sivashinsky equation”, Sel. Math., 13:3 (1994), 183–196 | MR | Zbl
[13] N. A. Kudryashov, “Metod razlozhenii Penleve dlya neintegriruemykh nelineinykh uravnenii”, Matem. modelirovanie, 2:12 (1990), 102–115 | MR | Zbl
[14] N. A. Kudryashov, “Tochnye resheniya nelineinykh volnovykh uravnenii, vstrechayuschikhsya v mekhanike”, PMM, 3:3 (1990), 450–456
[15] N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations”, Chaos Solitons Fractals, 24:5 (2005), 1217–1231 | DOI | MR | Zbl
[16] N. A. Kudryashov, “Exact soliton solutions of the generalized evolution equation of wave dynamics”, J. Appl. Math. Mech., 52:3 (1988), 361–365 | DOI | MR
[17] T. Kawahara, “Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation”, Phys. Rev. Lett., 51:5 (1983), 381–383 | DOI
[18] J. Topper, T. Kawahara, “Approximate equations for long nonlinear waves on a viscous fluid”, J. Phys. Soc. Japan, 44:2 (1978), 663–666 | DOI | MR
[19] H. Zhao, Sh. Tang, “Nonlinear stability and optimal decay rate for a multidimensional generalized Kuramoto–Sivashinsky system”, J. Math. Anal. Appl., 246:2 (2001), 423–445 | DOI | MR
[20] F. C. Pinto, “Nonlinear stability and dynamical properties for a Kuramoto–Sivashinsky equation in space dimension two”, Discrete Contin. Dynam. Systems, 5:1 (1999), 117–136 | DOI | MR | Zbl
[21] K.-S. Chou, “On a modified Kuramoto–Sivashinsky equation”, Differ. Integral Equ., 15:7 (2002), 863–874 | MR | Zbl
[22] V. Varlamov, “On the Kuramoto–Sivashinsky equation in a disk”, Ann. Polon. Math., 73:3 (2000), 227–256 | MR | Zbl
[23] L. Molinet, “Local dissipativity in $L^2$ for the Kuramoto–Sivashinsky equation in spatial dimension 2”, J. Dynam. Differ. Equ., 12:3 (2000), 533–556 | DOI | MR | Zbl
[24] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | MR | Zbl | Zbl
[25] Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | DOI | MR | MR | Zbl
[26] Dzh. Gugenkheimer, F. Kholms, Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, IKI, M.–Izhevsk, 2002 | MR | Zbl
[27] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | Zbl
[28] I. S. Kaschenko, S. A. Kaschenko, “Lokalnaya dinamika sistem raznostnykh i differentsialno-raznostnykh uravnenii”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 22:1 (2014), 71–92 | Zbl
[29] S. A. Kaschenko, “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | MR
[30] S. A. Kaschenko, “Normalization in the systems with small diffusion”, Internat. J. Bifurcations Chaos, 6:6 (1996), 1093–1109 | DOI | MR | Zbl
[31] I. S. Kaschenko, S. A. Kaschenko, “Kvazinormalnye formy dvukhkomponentnykh singulyarno vozmuschennykh sistem”, Dokl. RAN, 447:4 (2012), 3760–381 | DOI
[32] I. S. Kaschenko, “Multistabilnost v nelineinykh parabolicheskikh sistemakh s maloi diffuziei”, Dokl. RAN, 435:2 (2010), 164–167 | DOI
[33] A. A. Kaschenko, “Ustoichivost beguschikh voln v uravnenii Ginzburga–Landau s maloi diffuziei”, Model. i analiz inform. sistem, 18:3 (2011), 58–62