Mots-clés : configuration, phase transition.
@article{TMF_2017_191_3_a8,
author = {U. A. Rozikov and F. Kh. Khaidarov},
title = {Four competing interactions for models with an uncountable set of},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {503--517},
year = {2017},
volume = {191},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a8/}
}
TY - JOUR AU - U. A. Rozikov AU - F. Kh. Khaidarov TI - Four competing interactions for models with an uncountable set of JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 503 EP - 517 VL - 191 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a8/ LA - ru ID - TMF_2017_191_3_a8 ER -
U. A. Rozikov; F. Kh. Khaidarov. Four competing interactions for models with an uncountable set of. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 503-517. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a8/
[1] S. A. Pirogov, Ya. G. Sinai, “Fazovye diagrammy klassicheskikh reshetchatykh sistem”, TMF, 25:3 (1975), 358–369 | DOI | MR
[2] S. A. Pirogov, Ya. G. Sinai, “Fazovye diagrammy klassicheskikh reshetchatykh sistem (Prodolzhenie)”, TMF, 26:1 (1976), 61–76 | DOI | MR
[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | DOI | MR
[4] R. Kotecky, S. B. Shlosman, “First-order phase transition in large entropy lattice models”, Commun. Math. Phys., 83:4 (1982), 493–515 | DOI | MR
[5] A. Mazel, Y. Suhov, I. Stuhl, “A classical WR model with $q$ particle types”, J. Stat. Phys., 159:5 (2015), 1040–1086 | DOI | MR | Zbl
[6] A. Mazel, Y. Suhov, I. Stuhl, S. Zohren, “Dominance of most tolerant species in multi-type lattice Widom–Rowlinson models”, J. Stat. Mech., 8 (2014), P08010, 9 pp. | DOI | MR
[7] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl
[8] P. M. Blekher, N. N. Ganikhodzhaev, “O chistykh fazakh modeli Izinga na reshetkakh Bete”, Teoriya veroyatn. i ee primen., 35:2 (1990), 220–230 | DOI | MR | Zbl
[9] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice”, J. Stat. Phys., 79:1–2 (1995), 473–482 | DOI | MR | Zbl
[10] N. N. Ganikhodjaev, U. A. Rozikov, “On Ising model with four competing interactions on Cayley tree”, Math. Phys. Anal. Geom., 12:2 (2009), 141–156 | DOI | MR | Zbl
[11] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR | MR
[12] U. A. Rozikov, “Struktury razbienii na klassy smezhnosti gruppovogo predstavleniya dereva Keli po normalnym delitelyam konechnogo indeksa i ikh primeneniya dlya opisaniya periodicheskikh raspredelenii Gibbsa”, TMF, 112:1 (1997), 170–175 | DOI | DOI | MR | Zbl
[13] F. Spitzer, “Markov random fields on an infinite tree”, Ann. Probab., 3:3 (1975), 387–398 | DOI | MR | Zbl
[14] Y. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR | Zbl
[15] S. Zachary, “Countable state space Markov random fields and Markov chains on trees”, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl
[16] N. N. Ganikhodjaev, C. H. Pah, M. R. B. Wahiddin, “Exact solution of an Ising model with completing interections on a Cayley tree”, J. Phys. A.: Math. Gen., 36:15 (2003), 4283–4289 | DOI | MR | Zbl
[17] J. L. Monroe, “Phase diagrams of Ising models on Husime trees. II. Pair and multisite interaction systems”, J. Stat. Phys., 67:5–6 (1992), 1185–2000 | DOI | MR
[18] J. L. Monroe, “A new criterion for the location of phase transitions for spin system on a recursive lattice”, Phys. Lett. A, 188:1 (1994), 80–84 | DOI | Zbl
[19] N. N. Ganikhodzhaev, “Tochnoe reshenie modeli Izinga na dereve Keli s konkuriruyuschimi ternarnym i binarnym vzaimodeistviyami”, TMF, 130:3 (2002), 493–499 | DOI | DOI | MR | Zbl
[20] F. M. Mukhamedov, U. A. Rozikov, “On Gibbs measures of models with completing ternary and binary interactions and corresponding von Neumann algebras”, J. Stat. Phys., 114:3–4 (2004), 825–848 | DOI | MR | Zbl
[21] N. N. Ganikhodjaev, C. H. Pah, M. R. B. Wahiddin, “An Ising model with three competing interactions on a Cayley tree”, J. Math. Phys., 45:9 (2004), 3645–3658 | DOI | MR | Zbl
[22] N. N. Ganikhodjaev, U. A. Rozikov, “The Potts model with countable set of spin values on a Cayley tree”, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR | Zbl
[23] Yu. R. Dashyan, Yu. M. Sukhov, “K voprosu o gibbsovskom opisanii sluchainykh protsessov s diskretnym vremenem”, Dokl. AN SSSR, 242:3 (1978), 513–516 | MR | Zbl
[24] Yu. Kh. Eshkabilov, F. H. Haydarov, U. A. Rozikov, “Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, Math. Phys. Anal. Geom., 16:1 (2013), 1–17 | DOI | MR | Zbl
[25] Yu. Kh. Eshkabilov, F. H. Haydarov, U. A. Rozikov, “Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, J. Stat. Phys., 147:4 (2012), 779–794 | DOI | MR | Zbl
[26] Yu. Kh. Eshkabilov, Sh. D. Nodirov, F. H. Haydarov, “Positive fixed points of quadratic operators and Gibbs measures”, Positivity, 20:4 (2016), 929–943 | DOI | MR | Zbl
[27] Yu. Kh. Eshkabilov, F. H. Haydarov, “On positive solutions of the homogenous Hammerstein integral equation”, Nanosyst.: Phys. Chem. Math., 6:5 (2015), 618–627 | DOI
[28] B. Jahnel, C. Külske, G. I. Botirov, “Phase transition and critical value of nearest-neighbor system with uncountable local state space on Cayley tree”, Math. Phys. Anal. Geom., 17:3–4 (2014), 323–331 | DOI | MR | Zbl
[29] U. A. Rozikov, Yu. Kh. Eshkabilov, “On models with uncountable set of spin values on a Cayley tree: Integral equations”, Math. Phys. Anal. Geom., 13:3 (2010), 275–286 | DOI | MR | Zbl
[30] U. A. Rozikov, F. H. Haydarov, “Periodic Gibbs measures for models with uncountable set of spin values on a Cayley tree”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18:1 (2015), 1550006, 22 pp. | DOI | MR | Zbl
[31] U. A. Rozikov, Gibbs measures on a Cayley trees, World Sci., Singapore, 2013 | MR