Four competing interactions for models with an uncountable set of
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 503-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider models with four competing interactions (external field, nearest neighbor, second neighbor, and three neighbors) and an uncountable set $[0,1]$ of spin values on the Cayley tree of order two. We reduce the problem of describing the splitting Gibbs measures of the model to the problem of analyzing solutions of a nonlinear integral equation and study some particular cases for Ising and Potts models. We also show that periodic Gibbs measures for the given models either are translation invariant or have the period two. We present examples where periodic Gibbs measures with the period two are not unique.
Keywords: Cayley tree, competing interaction, Gibbs measure, Ising model, Potts model, periodic Gibbs measure
Mots-clés : configuration, phase transition.
@article{TMF_2017_191_3_a8,
     author = {U. A. Rozikov and F. Kh. Khaidarov},
     title = {Four competing interactions for models with an uncountable set of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {503--517},
     year = {2017},
     volume = {191},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a8/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - F. Kh. Khaidarov
TI  - Four competing interactions for models with an uncountable set of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 503
EP  - 517
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a8/
LA  - ru
ID  - TMF_2017_191_3_a8
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A F. Kh. Khaidarov
%T Four competing interactions for models with an uncountable set of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 503-517
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a8/
%G ru
%F TMF_2017_191_3_a8
U. A. Rozikov; F. Kh. Khaidarov. Four competing interactions for models with an uncountable set of. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 503-517. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a8/

[1] S. A. Pirogov, Ya. G. Sinai, “Fazovye diagrammy klassicheskikh reshetchatykh sistem”, TMF, 25:3 (1975), 358–369 | DOI | MR

[2] S. A. Pirogov, Ya. G. Sinai, “Fazovye diagrammy klassicheskikh reshetchatykh sistem (Prodolzhenie)”, TMF, 26:1 (1976), 61–76 | DOI | MR

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | DOI | MR

[4] R. Kotecky, S. B. Shlosman, “First-order phase transition in large entropy lattice models”, Commun. Math. Phys., 83:4 (1982), 493–515 | DOI | MR

[5] A. Mazel, Y. Suhov, I. Stuhl, “A classical WR model with $q$ particle types”, J. Stat. Phys., 159:5 (2015), 1040–1086 | DOI | MR | Zbl

[6] A. Mazel, Y. Suhov, I. Stuhl, S. Zohren, “Dominance of most tolerant species in multi-type lattice Widom–Rowlinson models”, J. Stat. Mech., 8 (2014), P08010, 9 pp. | DOI | MR

[7] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl

[8] P. M. Blekher, N. N. Ganikhodzhaev, “O chistykh fazakh modeli Izinga na reshetkakh Bete”, Teoriya veroyatn. i ee primen., 35:2 (1990), 220–230 | DOI | MR | Zbl

[9] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice”, J. Stat. Phys., 79:1–2 (1995), 473–482 | DOI | MR | Zbl

[10] N. N. Ganikhodjaev, U. A. Rozikov, “On Ising model with four competing interactions on Cayley tree”, Math. Phys. Anal. Geom., 12:2 (2009), 141–156 | DOI | MR | Zbl

[11] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR | MR

[12] U. A. Rozikov, “Struktury razbienii na klassy smezhnosti gruppovogo predstavleniya dereva Keli po normalnym delitelyam konechnogo indeksa i ikh primeneniya dlya opisaniya periodicheskikh raspredelenii Gibbsa”, TMF, 112:1 (1997), 170–175 | DOI | DOI | MR | Zbl

[13] F. Spitzer, “Markov random fields on an infinite tree”, Ann. Probab., 3:3 (1975), 387–398 | DOI | MR | Zbl

[14] Y. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR | Zbl

[15] S. Zachary, “Countable state space Markov random fields and Markov chains on trees”, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl

[16] N. N. Ganikhodjaev, C. H. Pah, M. R. B. Wahiddin, “Exact solution of an Ising model with completing interections on a Cayley tree”, J. Phys. A.: Math. Gen., 36:15 (2003), 4283–4289 | DOI | MR | Zbl

[17] J. L. Monroe, “Phase diagrams of Ising models on Husime trees. II. Pair and multisite interaction systems”, J. Stat. Phys., 67:5–6 (1992), 1185–2000 | DOI | MR

[18] J. L. Monroe, “A new criterion for the location of phase transitions for spin system on a recursive lattice”, Phys. Lett. A, 188:1 (1994), 80–84 | DOI | Zbl

[19] N. N. Ganikhodzhaev, “Tochnoe reshenie modeli Izinga na dereve Keli s konkuriruyuschimi ternarnym i binarnym vzaimodeistviyami”, TMF, 130:3 (2002), 493–499 | DOI | DOI | MR | Zbl

[20] F. M. Mukhamedov, U. A. Rozikov, “On Gibbs measures of models with completing ternary and binary interactions and corresponding von Neumann algebras”, J. Stat. Phys., 114:3–4 (2004), 825–848 | DOI | MR | Zbl

[21] N. N. Ganikhodjaev, C. H. Pah, M. R. B. Wahiddin, “An Ising model with three competing interactions on a Cayley tree”, J. Math. Phys., 45:9 (2004), 3645–3658 | DOI | MR | Zbl

[22] N. N. Ganikhodjaev, U. A. Rozikov, “The Potts model with countable set of spin values on a Cayley tree”, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR | Zbl

[23] Yu. R. Dashyan, Yu. M. Sukhov, “K voprosu o gibbsovskom opisanii sluchainykh protsessov s diskretnym vremenem”, Dokl. AN SSSR, 242:3 (1978), 513–516 | MR | Zbl

[24] Yu. Kh. Eshkabilov, F. H. Haydarov, U. A. Rozikov, “Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, Math. Phys. Anal. Geom., 16:1 (2013), 1–17 | DOI | MR | Zbl

[25] Yu. Kh. Eshkabilov, F. H. Haydarov, U. A. Rozikov, “Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, J. Stat. Phys., 147:4 (2012), 779–794 | DOI | MR | Zbl

[26] Yu. Kh. Eshkabilov, Sh. D. Nodirov, F. H. Haydarov, “Positive fixed points of quadratic operators and Gibbs measures”, Positivity, 20:4 (2016), 929–943 | DOI | MR | Zbl

[27] Yu. Kh. Eshkabilov, F. H. Haydarov, “On positive solutions of the homogenous Hammerstein integral equation”, Nanosyst.: Phys. Chem. Math., 6:5 (2015), 618–627 | DOI

[28] B. Jahnel, C. Külske, G. I. Botirov, “Phase transition and critical value of nearest-neighbor system with uncountable local state space on Cayley tree”, Math. Phys. Anal. Geom., 17:3–4 (2014), 323–331 | DOI | MR | Zbl

[29] U. A. Rozikov, Yu. Kh. Eshkabilov, “On models with uncountable set of spin values on a Cayley tree: Integral equations”, Math. Phys. Anal. Geom., 13:3 (2010), 275–286 | DOI | MR | Zbl

[30] U. A. Rozikov, F. H. Haydarov, “Periodic Gibbs measures for models with uncountable set of spin values on a Cayley tree”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18:1 (2015), 1550006, 22 pp. | DOI | MR | Zbl

[31] U. A. Rozikov, Gibbs measures on a Cayley trees, World Sci., Singapore, 2013 | MR