Averaging of random walks and shift-invariant measures on a~Hilbert space
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 473-502
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study random walks in a Hilbert space $H$ and representations using them of solutions of the Cauchy problem for differential equations whose initial conditions are numerical functions on $H$. We construct a finitely additive analogue of the Lebesgue measure: a nonnegative finitely additive measure $\lambda$ that is defined on a minimal subset ring of an infinite-dimensional Hilbert space $H$ containing all infinite-dimensional rectangles with absolutely converging products of the side lengths and is invariant under shifts and rotations in $H$. We define the Hilbert space $\mathcal H$ of equivalence classes of complex-valued functions on $H$ that are square integrable with respect to a shift-invariant measure $\lambda$. Using averaging of the shift operator in $\mathcal H$ over random vectors in $H$ with a distribution given by a one-parameter semigroup (with respect to convolution) of Gaussian measures on $H$, we define a one-parameter semigroup of contracting self-adjoint transformations on $\mathcal H$, whose generator is called the diffusion operator. We obtain a representation of solutions of the Cauchy problem for the Schrödinger equation whose Hamiltonian is the diffusion operator.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
invariant measure on Hilbert space, finitely additive measure, random walk,
Schrödinger equation, Cauchy problem.
                    
                  
                
                
                @article{TMF_2017_191_3_a7,
     author = {V. Zh. Sakbaev},
     title = {Averaging of random walks and shift-invariant measures on {a~Hilbert} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--502},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/}
}
                      
                      
                    TY - JOUR AU - V. Zh. Sakbaev TI - Averaging of random walks and shift-invariant measures on a~Hilbert space JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 473 EP - 502 VL - 191 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/ LA - ru ID - TMF_2017_191_3_a7 ER -
V. Zh. Sakbaev. Averaging of random walks and shift-invariant measures on a~Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 473-502. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/
