Averaging of random walks and shift-invariant measures on a~Hilbert space
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 473-502

Voir la notice de l'article provenant de la source Math-Net.Ru

We study random walks in a Hilbert space $H$ and representations using them of solutions of the Cauchy problem for differential equations whose initial conditions are numerical functions on $H$. We construct a finitely additive analogue of the Lebesgue measure: a nonnegative finitely additive measure $\lambda$ that is defined on a minimal subset ring of an infinite-dimensional Hilbert space $H$ containing all infinite-dimensional rectangles with absolutely converging products of the side lengths and is invariant under shifts and rotations in $H$. We define the Hilbert space $\mathcal H$ of equivalence classes of complex-valued functions on $H$ that are square integrable with respect to a shift-invariant measure $\lambda$. Using averaging of the shift operator in $\mathcal H$ over random vectors in $H$ with a distribution given by a one-parameter semigroup (with respect to convolution) of Gaussian measures on $H$, we define a one-parameter semigroup of contracting self-adjoint transformations on $\mathcal H$, whose generator is called the diffusion operator. We obtain a representation of solutions of the Cauchy problem for the Schrödinger equation whose Hamiltonian is the diffusion operator.
Keywords: invariant measure on Hilbert space, finitely additive measure, random walk, Schrödinger equation, Cauchy problem.
@article{TMF_2017_191_3_a7,
     author = {V. Zh. Sakbaev},
     title = {Averaging of random walks and shift-invariant measures on {a~Hilbert} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--502},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/}
}
TY  - JOUR
AU  - V. Zh. Sakbaev
TI  - Averaging of random walks and shift-invariant measures on a~Hilbert space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 473
EP  - 502
VL  - 191
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/
LA  - ru
ID  - TMF_2017_191_3_a7
ER  - 
%0 Journal Article
%A V. Zh. Sakbaev
%T Averaging of random walks and shift-invariant measures on a~Hilbert space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 473-502
%V 191
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/
%G ru
%F TMF_2017_191_3_a7
V. Zh. Sakbaev. Averaging of random walks and shift-invariant measures on a~Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 473-502. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/