Averaging of random walks and shift-invariant measures on a Hilbert space
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 473-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study random walks in a Hilbert space $H$ and representations using them of solutions of the Cauchy problem for differential equations whose initial conditions are numerical functions on $H$. We construct a finitely additive analogue of the Lebesgue measure: a nonnegative finitely additive measure $\lambda$ that is defined on a minimal subset ring of an infinite-dimensional Hilbert space $H$ containing all infinite-dimensional rectangles with absolutely converging products of the side lengths and is invariant under shifts and rotations in $H$. We define the Hilbert space $\mathcal H$ of equivalence classes of complex-valued functions on $H$ that are square integrable with respect to a shift-invariant measure $\lambda$. Using averaging of the shift operator in $\mathcal H$ over random vectors in $H$ with a distribution given by a one-parameter semigroup (with respect to convolution) of Gaussian measures on $H$, we define a one-parameter semigroup of contracting self-adjoint transformations on $\mathcal H$, whose generator is called the diffusion operator. We obtain a representation of solutions of the Cauchy problem for the Schrödinger equation whose Hamiltonian is the diffusion operator.
Keywords: invariant measure on Hilbert space, finitely additive measure, random walk, Schrödinger equation, Cauchy problem.
@article{TMF_2017_191_3_a7,
     author = {V. Zh. Sakbaev},
     title = {Averaging of random walks and shift-invariant measures on {a~Hilbert} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--502},
     year = {2017},
     volume = {191},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/}
}
TY  - JOUR
AU  - V. Zh. Sakbaev
TI  - Averaging of random walks and shift-invariant measures on a Hilbert space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 473
EP  - 502
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/
LA  - ru
ID  - TMF_2017_191_3_a7
ER  - 
%0 Journal Article
%A V. Zh. Sakbaev
%T Averaging of random walks and shift-invariant measures on a Hilbert space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 473-502
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/
%G ru
%F TMF_2017_191_3_a7
V. Zh. Sakbaev. Averaging of random walks and shift-invariant measures on a Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 473-502. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/

[1] A. D. Venttsel, M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl

[2] A. V. Skorokhod, “Proizvedeniya nezavisimykh sluchainykh operatorov”, UMN, 38:4(232) (1983), 255–280 | DOI | MR | Zbl

[3] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR

[4] V. I. Bogachev, Osnovy teorii mery, v. 1, RKhD, M.–Izhevsk, 2006 | DOI | MR | Zbl

[5] V. I. Bogachev, N. V. Krylov, M. Rekner, “Ellipticheskie i parabolicheskie uravneniya dlya mer”, UMN, 64:6(390) (2009), 5–116 | DOI | DOI | MR | Zbl

[6] I. D. Remizov, “Solution of a Cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula”, Russ. J. Math. Phys., 19:3 (2012), 360–372 | DOI | MR | Zbl

[7] X.-C. Go, Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979 | MR | Zbl

[8] A. M. Vershik, “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Tr. MIAN, 259 (2007), 256–281 | DOI | MR | Zbl

[9] V. I. Bogachev, Gaussovskie mery, Fizmatlit, M., 1997 | MR | Zbl

[10] E. B. Dynkin, Markovskie protsessy, Fizmatgiz, M., 1963 | MR | Zbl

[11] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Neogranichennye sluchainye operatory i formuly Feinmana”, Izv. RAN. Ser. matem., 80:6 (2016), 141–172 | DOI | MR | Zbl

[12] I. D. Remizov, “Reshenie uravneniya Shredingera s pomoschyu operatora sdviga”, Matem. zametki, 100:3 (2016), 477–480 | DOI | DOI | MR | Zbl

[13] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equation, Graduate Texts in Mathematics, 194, Springer, New York, 2000 | MR

[14] L. S. Efremova, V. Zh. Sakbaev, “Ponyatie vzryva mnozhestva reshenii differentsialnykh uravnenii i usrednenie sluchainykh polugrupp”, TMF, 185:2 (2015), 252–271 | DOI | DOI | MR | Zbl

[15] A. Veil, Integrirovanie v topologicheskikh gruppakh i ego primenenie, IL, M., 1950 | MR

[16] L. Accardy, P. Gibilisco, I. V. Volovich, “Yang–Mills gauge fields as harmonic function for the Lévy Laplacians”, Russ. J. Math. Phys., 2:2 (1994), 235–250 | MR

[17] L. Akkardi, O. G. Smolyanov, “Obobschennye laplasiany Levi i chezarovskie srednie”, Dokl. RAN, 424:5 (2009), 583–587 | DOI | MR

[18] R. Léandre, I. V. Volovich, “The stochastic Lévy Laplacians and Yang–Mills equation on manifolds”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4:2 (2001), 161–172 | DOI | MR | Zbl

[19] B. O. Volkov, “Quantum probability and Lévy Laplacians”, Russ. J. Math. Phys., 20:2 (2013), 254–256 | DOI | MR | Zbl

[20] L. Accardi, Y. G. Lu, I. V. Volovich, Quantum Theory and Its Stochastic Limit, Springer, Berlin, 2001 | DOI | MR

[21] M. Ohya, I. V. Volovich, Mathematical Foundation of Quantum Information and Computation and Its Application to Nano- and Bio-system, Springer, Dordrecht, 2011 | DOI | MR

[22] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera”, Preprinty IPM im. M. V. Keldysha RAN, 2015, 057, 23 pp.

[23] V. Zh. Sakbaev, O. G. Smolyanov, N. N. Shamarov, “Negaussovskie lagranzhevy formuly Feinmana–Katsa”, Dokl. RAN, 457:1 (2014), 28–31 | DOI | Zbl

[24] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, URSS, M., 2015

[25] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR | Zbl