@article{TMF_2017_191_3_a7,
author = {V. Zh. Sakbaev},
title = {Averaging of random walks and shift-invariant measures on {a~Hilbert} space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {473--502},
year = {2017},
volume = {191},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/}
}
V. Zh. Sakbaev. Averaging of random walks and shift-invariant measures on a Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 473-502. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a7/
[1] A. D. Venttsel, M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl
[2] A. V. Skorokhod, “Proizvedeniya nezavisimykh sluchainykh operatorov”, UMN, 38:4(232) (1983), 255–280 | DOI | MR | Zbl
[3] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR
[4] V. I. Bogachev, Osnovy teorii mery, v. 1, RKhD, M.–Izhevsk, 2006 | DOI | MR | Zbl
[5] V. I. Bogachev, N. V. Krylov, M. Rekner, “Ellipticheskie i parabolicheskie uravneniya dlya mer”, UMN, 64:6(390) (2009), 5–116 | DOI | DOI | MR | Zbl
[6] I. D. Remizov, “Solution of a Cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula”, Russ. J. Math. Phys., 19:3 (2012), 360–372 | DOI | MR | Zbl
[7] X.-C. Go, Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979 | MR | Zbl
[8] A. M. Vershik, “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Tr. MIAN, 259 (2007), 256–281 | DOI | MR | Zbl
[9] V. I. Bogachev, Gaussovskie mery, Fizmatlit, M., 1997 | MR | Zbl
[10] E. B. Dynkin, Markovskie protsessy, Fizmatgiz, M., 1963 | MR | Zbl
[11] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Neogranichennye sluchainye operatory i formuly Feinmana”, Izv. RAN. Ser. matem., 80:6 (2016), 141–172 | DOI | MR | Zbl
[12] I. D. Remizov, “Reshenie uravneniya Shredingera s pomoschyu operatora sdviga”, Matem. zametki, 100:3 (2016), 477–480 | DOI | DOI | MR | Zbl
[13] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equation, Graduate Texts in Mathematics, 194, Springer, New York, 2000 | MR
[14] L. S. Efremova, V. Zh. Sakbaev, “Ponyatie vzryva mnozhestva reshenii differentsialnykh uravnenii i usrednenie sluchainykh polugrupp”, TMF, 185:2 (2015), 252–271 | DOI | DOI | MR | Zbl
[15] A. Veil, Integrirovanie v topologicheskikh gruppakh i ego primenenie, IL, M., 1950 | MR
[16] L. Accardy, P. Gibilisco, I. V. Volovich, “Yang–Mills gauge fields as harmonic function for the Lévy Laplacians”, Russ. J. Math. Phys., 2:2 (1994), 235–250 | MR
[17] L. Akkardi, O. G. Smolyanov, “Obobschennye laplasiany Levi i chezarovskie srednie”, Dokl. RAN, 424:5 (2009), 583–587 | DOI | MR
[18] R. Léandre, I. V. Volovich, “The stochastic Lévy Laplacians and Yang–Mills equation on manifolds”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4:2 (2001), 161–172 | DOI | MR | Zbl
[19] B. O. Volkov, “Quantum probability and Lévy Laplacians”, Russ. J. Math. Phys., 20:2 (2013), 254–256 | DOI | MR | Zbl
[20] L. Accardi, Y. G. Lu, I. V. Volovich, Quantum Theory and Its Stochastic Limit, Springer, Berlin, 2001 | DOI | MR
[21] M. Ohya, I. V. Volovich, Mathematical Foundation of Quantum Information and Computation and Its Application to Nano- and Bio-system, Springer, Dordrecht, 2011 | DOI | MR
[22] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera”, Preprinty IPM im. M. V. Keldysha RAN, 2015, 057, 23 pp.
[23] V. Zh. Sakbaev, O. G. Smolyanov, N. N. Shamarov, “Negaussovskie lagranzhevy formuly Feinmana–Katsa”, Dokl. RAN, 457:1 (2014), 28–31 | DOI | Zbl
[24] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, URSS, M., 2015
[25] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR | Zbl