Exact Laplace-type asymptotic formulas for the~Bogoliubov Gaussian measure: The~set of minimum points of the~action functional
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 456-472

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the exact asymptotic relations of large deviations of the Bogoliubov measure in the $L^p$ norm for $p=4,6,8,10$ with $p>p_0$, where $p_0=2+4\pi^2/\beta^2\omega^2$ is a threshold value, $\beta>0$ is the inverse temperature, and $\omega>0$ is the natural frequency of the harmonic oscillator. For the study, we use the Laplace method in function spaces for Gaussian measures.
Keywords: Bogoliubov measure, Laplace method in a Banach space, action functional, set of minimum points.
@article{TMF_2017_191_3_a6,
     author = {V. R. Fatalov},
     title = {Exact {Laplace-type} asymptotic formulas for {the~Bogoliubov} {Gaussian} measure: {The~set} of minimum points of the~action functional},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {456--472},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a6/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Exact Laplace-type asymptotic formulas for the~Bogoliubov Gaussian measure: The~set of minimum points of the~action functional
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 456
EP  - 472
VL  - 191
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a6/
LA  - ru
ID  - TMF_2017_191_3_a6
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Exact Laplace-type asymptotic formulas for the~Bogoliubov Gaussian measure: The~set of minimum points of the~action functional
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 456-472
%V 191
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a6/
%G ru
%F TMF_2017_191_3_a6
V. R. Fatalov. Exact Laplace-type asymptotic formulas for the~Bogoliubov Gaussian measure: The~set of minimum points of the~action functional. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 456-472. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a6/