Exact Laplace-type asymptotic formulas for the Bogoliubov Gaussian measure: The set of minimum points of the action functional
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 456-472 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a theorem on the exact asymptotic relations of large deviations of the Bogoliubov measure in the $L^p$ norm for $p=4,6,8,10$ with $p>p_0$, where $p_0=2+4\pi^2/\beta^2\omega^2$ is a threshold value, $\beta>0$ is the inverse temperature, and $\omega>0$ is the natural frequency of the harmonic oscillator. For the study, we use the Laplace method in function spaces for Gaussian measures.
Keywords: Bogoliubov measure, Laplace method in a Banach space, action functional, set of minimum points.
@article{TMF_2017_191_3_a6,
     author = {V. R. Fatalov},
     title = {Exact {Laplace-type} asymptotic formulas for {the~Bogoliubov} {Gaussian} measure: {The~set} of minimum points of the~action functional},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {456--472},
     year = {2017},
     volume = {191},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a6/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Exact Laplace-type asymptotic formulas for the Bogoliubov Gaussian measure: The set of minimum points of the action functional
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 456
EP  - 472
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a6/
LA  - ru
ID  - TMF_2017_191_3_a6
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Exact Laplace-type asymptotic formulas for the Bogoliubov Gaussian measure: The set of minimum points of the action functional
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 456-472
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a6/
%G ru
%F TMF_2017_191_3_a6
V. R. Fatalov. Exact Laplace-type asymptotic formulas for the Bogoliubov Gaussian measure: The set of minimum points of the action functional. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 456-472. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a6/

[1] D. P. Sankovich, “Gaussovy funktsionalnye integraly i gibbsovskie ravnovesnye srednie”, TMF, 119:2 (1999), 345–352 | DOI | DOI | MR | Zbl

[2] D. P. Sankovich, “O nekotorykh svoistvakh funktsionalnykh integralov po mere Bogolyubova”, TMF, 126:1 (2001), 149–163 | DOI | DOI | MR | Zbl

[3] D. P. Sankovich, “Metricheskie svoistva bogolyubovskikh traektorii v teorii statisticheskogo ravnovesiya”, TMF, 127:1 (2001), 125–142 | DOI | DOI | MR | Zbl

[4] N. N. Bogolyubov, “O predstavlenii funktsii Grina–Shvingera pri pomoschi funktsionalnykh integralov”, Dokl. AN SSSR, 99:2 (1954), 225–226 ; Собрание научных трудов в 12 томах, т. 9, Квантовая теория поля, Наука, М., 2007, 245–247 | MR | Zbl

[5] G. Kramer, M. Lidbetter, Statsionarnye sluchainye protsessy. Svoistva vyborochnykh funktsii i ikh prilozheniya, Mir, M., 1969 | MR | Zbl

[6] V. R. Fatalov, “Tochnye asimptotiki tipa Laplasa dlya gaussovskoi mery Bogolyubova”, TMF, 168:2 (2011), 299–340 | DOI | DOI | Zbl

[7] V. R. Fatalov, “Ryady teorii vozmuscheniya v kvantovoi mekhanike: fazovye perekhody i tochnye asimptotiki dlya koeffitsientov razlozheniya”, TMF, 174:3 (2013), 416–443 | DOI | DOI | MR | Zbl

[8] V. R. Fatalov, “O metode Laplasa dlya gaussovskikh mer v banakhovom prostranstve”, Teoriya veroyatn. i ee primen., 58:2 (2013), 325–354 | DOI | DOI | Zbl

[9] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | DOI | MR | MR | Zbl

[10] A. S. Mischenko, A. T. Fomenko, Kurs differentsialnoi geometrii i topologii, Iz-vo Mosk. un-ta, M., 1980 | MR | MR | Zbl

[11] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR | MR | Zbl

[12] R. S. Ellis, J. S. Rosen, “Asymptotic analysis of Gaussian integrals I: Isolated minimum points”, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 | DOI | MR | Zbl

[13] R. S. Ellis, J. S. Rosen, “Asymptotic analysis of Gaussian integrals II: Manifold of minimum points”, Commun. Math. Phys., 82:2 (1981), 153–181 | DOI | MR | Zbl

[14] V. I. Piterbarg, V. R. Fatalov, “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, UMN, 50:6(306) (1995), 57–150 | DOI | MR | Zbl

[15] A. Pich, Operatornye idealy, Mir, M., 1982 | MR | Zbl

[16] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatgiz, M., 1965 | MR | MR | Zbl | Zbl

[17] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, URSS, M., 2007 | MR | Zbl

[18] F. Olver, Asimptotiki i spetsialnye funktsii, Nauka, M., 1990 | MR | MR | Zbl