Some solvability problems for the Boltzmann equation in the framework of the Shakhov model
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 441-455 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the nonlinear Boltzmann equation in the framework of the Shakhov model for the classical problem of gas flow in a plane layer. The problem reduces to a system of nonlinear integral equations. The nonlinearity of the studied system can be partially simplified by passing to a new argument depending on the solution of the problem itself. We prove the existence theorem for a unique solution of the linear system and the existence theorem for a positive solution of the nonlinear Urysohn equation. We determine the temperature jumps on the lower and upper walls in the linear and nonlinear cases, and it turns out that the difference between them is rather small.
Keywords: nonlinearity, monotonicity, model equation, iteration, temperature jump, kinetic thickness.
@article{TMF_2017_191_3_a5,
     author = {A. Kh. Khachatryan and A. A. Khachatryan},
     title = {Some solvability problems for {the~Boltzmann} equation in the~framework of {the~Shakhov} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--455},
     year = {2017},
     volume = {191},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a5/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - A. A. Khachatryan
TI  - Some solvability problems for the Boltzmann equation in the framework of the Shakhov model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 441
EP  - 455
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a5/
LA  - ru
ID  - TMF_2017_191_3_a5
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A A. A. Khachatryan
%T Some solvability problems for the Boltzmann equation in the framework of the Shakhov model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 441-455
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a5/
%G ru
%F TMF_2017_191_3_a5
A. Kh. Khachatryan; A. A. Khachatryan. Some solvability problems for the Boltzmann equation in the framework of the Shakhov model. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 441-455. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a5/

[1] P. L. Bhatnagar, E. P. Gross, M. Krook, “A model for collision processes in gases”, Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl

[2] L. H. Holway, “New statistical model for kinetic theory: methods of construction”, Phys. Fluids, 9:9 (1966), 1658–1673 | DOI

[3] E. M. Shakhov, “Ob obobschenii relaksatsionnogo kineticheskogo uravneniya Kruka”, Izv. AN SSSR. Ser. MZhG, 1968, no. 5, 142–145

[4] V. A. Titarev, “Conservative numerical methods for advanced model kinetic equations”, European Conference on Computational Fluid Dynamics (TU Delft, The Netherlands, 2006), eds. E. Oñate, P. Wessling, J. Périaux, Delft University of Technology, Netherlands, 2006, 1–13

[5] G. Liu, “A method for constructing a model form for the Boltzman equation”, Phys. Fluids, 2:2 (1990), 277–280 | DOI | MR | Zbl

[6] Y. Zheng, H. Struchtrup, “Ellipsoidal statistical Bhatnagar–Gross–Krook model with velocity-dependent collision frequency”, Phys. Fluids, 17:2 (2005), 127103, 17 pp. | DOI | MR | Zbl

[7] A. A. Latyshev, A. A. Yushkanov, “Teplovoe i izotermicheskoe skolzhenie v novom modelnom kineticheskom uravnenii Liu”, Pisma v ZhTF, 23:14 (1997), 13–16

[8] A. A. Latyshev, A. A. Yushkanov, “Skachok temperatury i slaboe isparenie v molekulyarnykh gazakh”, ZhETF, 114:3(9) (1998), 956–971 | DOI

[9] M. N. Kogan, Dinamika razrezhennogo gaza, Nauka, M., 1967 | Zbl

[10] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | DOI

[11] A. A. Latyshev, A. A. Yushkanov, “Analiticheskoe reshenie granichnoi zadachi dlya uravneniya Shakhova s chastotoi stolknovenii, proportsionalnoi skorosti molekul”, Izv. RAN. Ser. MZhG, 2003, no. 4, 144–157 | Zbl

[12] N. B. Engibaryan, A. Kh. Khachatryan, “Voprosy nelineinoi teorii dinamiki razrezhennogo gaza”, Matem. modelirovanie, 16:1 (2004), 67–74 | MR | Zbl

[13] V. A. Ambartsumyan, “O nekotorykh nelineinykh zadachakh teorii perenosa izlucheniya”, Teoriya zvezdnykh spektrov, eds. V. V. Sobolev, V. G. Gorbatskii, V. V. Ivanov, Nauka, M., 1966

[14] N. B. Engibaryan, “Ob odnoi zadache nelineinogo perenosa izlucheniya”, Astrofizika, 26:1 (1966), 31–36

[15] A. Kh. Khachatryan, “Ob analitichesko-chislennom reshenii zadachi Kuetta v ramkakh BGK modeli uravneniya Boltsmana v nelineinom i lineinom sluchayakh”, Vestn. Rossiisko-\allowbreakArmyanskogo (Slavyanskogo) universiteta, 2 (2014), 16–32

[16] O. A. Kolenchits, Teplovaya akkomodatsiya sistem gaz – tverdoe telo, Izd-vo “Nauka i tekhnika”, Minsk, 1977