Mots-clés : hexatic phase.
@article{TMF_2017_191_3_a4,
author = {V. N. Ryzhov and E. E. Tareeva and Yu. D. Fomin and E. N. Tsiok and E. S. Chumakov},
title = {Renormalization group study of the~melting of a~two-dimensional system of collapsing hard disks},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {424--440},
year = {2017},
volume = {191},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a4/}
}
TY - JOUR AU - V. N. Ryzhov AU - E. E. Tareeva AU - Yu. D. Fomin AU - E. N. Tsiok AU - E. S. Chumakov TI - Renormalization group study of the melting of a two-dimensional system of collapsing hard disks JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 424 EP - 440 VL - 191 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a4/ LA - ru ID - TMF_2017_191_3_a4 ER -
%0 Journal Article %A V. N. Ryzhov %A E. E. Tareeva %A Yu. D. Fomin %A E. N. Tsiok %A E. S. Chumakov %T Renormalization group study of the melting of a two-dimensional system of collapsing hard disks %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 424-440 %V 191 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a4/ %G ru %F TMF_2017_191_3_a4
V. N. Ryzhov; E. E. Tareeva; Yu. D. Fomin; E. N. Tsiok; E. S. Chumakov. Renormalization group study of the melting of a two-dimensional system of collapsing hard disks. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 424-440. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a4/
[1] M. Alcoutlabi, G. B. McKenna, “Effects of confinement on material behaviour at the nanometre size scale”, J. Phys.: Condens. Matter, 17:15 (2005), R461–R524 | DOI
[2] S. A. Rice, “Structure in confined colloid suspensions”, Chem. Phys. Lett., 479:1–3 (2009), 1–13 | DOI
[3] L. B. Krott, M. C. Barbosa, “Anomalies in a waterlike model confined between plates”, J. Chem. Phys., 138 (2013), 084505, 12 pp. | DOI
[4] A. M. Almudallal, S. V. Buldyrev, I. Saika-Voivod, “Phase diagram of a two-dimensional system with anomalous liquid properties”, J. Chem. Phys., 137:3 (2012), 034507, 10 pp. | DOI
[5] L. B. Krott, J. R. Bordin, “Distinct dynamical and structural properties of a core-softened fluid when confined between fluctuating and fixed walls”, J. Chem. Phys., 139:15 (2013), 154502 | DOI
[6] L. B. Krott, M. C. Barbosa, “Model of waterlike fluid under confinement for hydrophobic and hydrophilic particle-plate interaction potentials”, Phys. Rev. E, 89:1 (2014), 012110, 11 pp. | DOI
[7] N. N. Bogolyubov, “Kvazisrednie v zadachakh statisticheskoi mekhaniki”, Sobranie nauchnykh trudov. Ctatisticheskaya mekhanika, v. 6, Ravnovesnaya statisticheskaya mekhanika: 1945–1986, Nauka, M., 2006, 236–360 | MR | Zbl
[8] N. D. Mermin, “Crystalline order in two dimensions”, Phys. Rev., 176:1 (1968), 250–254 ; Erratum, Phys. Rev. B, 20:11 (1979), 4762–4762 ; 74:14 (2006), 149902, 1 pp. | DOI | DOI | DOI
[9] M. Kosterlitz, D. J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems”, J. Phys. C, 6:7 (1973), 1181–1203 | DOI
[10] B. I. Halperin, D. R. Nelson, “Theory of two-dimensional melting”, Phys. Rev. Lett., 41:2 (1978), 121–124 | DOI | MR
[11] D. R. Nelson, B. I. Halperin, “Dislocation-mediated melting in two dimensions”, Phys. Rev. B, 19:5 (1979), 2457–2484 | DOI
[12] A. P. Young, “Melting and the vector Coulomb gas in two dimensions”, Phys. Rev. B, 19:4 (1979), 1855–1866 | DOI
[13] U. Gasser, C. Eisenmann, G. Maret, P. Keim, “Melting of crystals in two dimensions”, Chem. Phys. Chem., 11 (2010), 963–970 | DOI
[14] K. Zahn, G. Maret, “Dynamic criteria for melting in two dimensions”, Phys. Rev. Lett., 85:17 (2000), 3656–3659 | DOI
[15] P. Keim, G. Maret, H. H. von Grünberg, “Frank's constant in the hexatic phase”, Phys. Rev. E, 75:3 (2007), 031402, 6 pp. | DOI
[16] S. Deutschländer, T. Horn, H. Löwen, G. Maret, P. Keim, “Two-dimensional melting under quenched disorder”, Phys. Rev. Lett., 111:9 (2013), 098301, 5 pp. ; Erratum, 111:25, 259901, 1 \year 2013 pp. | DOI | DOI
[17] T. Horn, S. Deutschländer, H. Löwen, G. Maret, P. Keim, “Fluctuations of orientational order and clustering in a two-dimensional colloidal system under quenched disorder”, Phys. Rev. E, 88:6 (2013), 062305, 9 pp. | DOI
[18] S. T. Chui, “Grain-boundary theory of melting in two dimensions”, Phys. Rev. B, 28:1 (1983), 178–194 | DOI
[19] W. Janke, H. Kleinert, “Monte Carlo study of two-step defect melting”, Phys. Rev. B, 41:10 (1990), 6848–6863 | DOI
[20] V. N. Ryzhov, E. E. Tareyeva, “Two-stage melting in two dimensions: first-principles approach”, Phys. Rev. B, 51:14 (1995), 8789–8794 | DOI
[21] V. N. Ryzhov, E. E. Tareeva, “Mikroskopicheskoe opisanie dvukhstadiinogo plavleniya v dvukh izmereniyakh”, ZhETF, 108:6 (1995), 2044–2060
[22] V. N. Ryzhov, E. E. Tareyeva, “Melting in two dimensions: first-order versus continuous transition”, Physica A, 314:1–4 (2002), 396–404 | DOI
[23] L. M. Pomirchi, V. N. Ryzhov, E. E. Tareeva, “Plavlenie dvumernykh sistem: zavisimost roda perekhoda ot radiusa potentsiala”, TMF, 130:1 (2002), 119–130 | DOI | DOI | Zbl
[24] E. S. Chumakov, Y. D. Fomin, E. L. Shangina, E. E. Tareyeva, E. N. Tsiok, V. N. Ryzhov, “Phase diagram of the system with the repulsive shoulder potential in two dimensions: density functional approach”, Physica A, 432 (2015), 279–286 | DOI | MR
[25] V. N. Ryzhov, “Disklinatsionnoe plavlenie dvumernykh reshetok”, TMF, 88:3 (1991), 449–458 | DOI | MR
[26] V. N. Ryzhov, “Dislokatsionno-disklinatsionnoe plavlenie dvumernykh reshetok”, ZhETF, 100:5 (1991), 1627–1639
[27] S. Prestipino, F. Saija, P. V. Giaquinta, “Hexatic phase and water-like anomalies in a two-dimensional fluid of particles with a weakly softened core”, J. Chem. Phys., 137:10 (2012), 104503 | DOI
[28] P. Bladon, D. Frenkel, “Dislocation unbinding in dense two-dimensional crystals”, Phys. Rev. Lett., 74:13 (1995), 2519–2522 | DOI
[29] S. I. Lee, S. J. Lee, “Effect of the range of the potential on two-dimensional melting”, Phys. Rev. E, 78:4 (2008), 041504, 9 pp. | DOI
[30] S. Prestipino, F. Saija, P. V. Giaquinta, “Hexatic phase in the two-dimensional gaussian-core model”, Phys. Rev. Lett., 106:23 (2011), 235701, 4 pp. | DOI
[31] R. Zangi, S. A. Rice, “Phase transitions in a quasi-two-dimensional system”, Phys. Rev. E, 58:6 (1998), 7529–7544 | DOI
[32] D. Frydel, S. A. Rice, “Phase diagram of a quasi-two-dimensional colloid assembly”, Phys. Rev. E, 68:6 (2003), 061405, 16 pp. | DOI
[33] D. E. Dudalov, Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, “Melting scenario of the two-dimensional core-softened system: first-order or continuous transition?”, J. Phys.: Conf. Ser., 510:1 (2014), 012016 | DOI
[34] D. E. Dudalov, Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, “Effect of a potential softness on the solid-liquid transition in a two-dimensional core-softened potential system”, J. Chem. Phys., 141:18 (2014), 18C522 | DOI
[35] D. E. Dudalov, Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, “How dimensionality changes the anomalous behavior and melting scenario of a core-softened potential system?”, Soft Matter, 10:27 (2014), 4966–4976 | DOI
[36] E. N. Tsiok, D. E. Dudalov, Yu. D. Fomin, V. N. Ryzhov, “Random pinning changes the melting scenario of a two-dimensional core-softened potential system”, Phys. Rev. E, 92:3 (2015), 032110, 5 pp. | DOI
[37] J. Lee, K. J. Strandburg, “First-order melting transition of the hard-disk system”, Phys. Rev. B, 46:17 (1992), 11190–11193 | DOI
[38] H. Weber, D. Marx, K. Binder, “Melting transition in two dimensions: a finite-size scaling analysis of bond-orientational order in hard disks”, Phys. Rev. B, 51:20 (1995), 14636–14651 | DOI
[39] C. H. Mak, “Large-scale simulations of the two-dimensional melting of hard disks”, Phys. Rev. E, 73:6 (2006), 065104, 4 pp. | DOI
[40] A. Jaster, “Orientational order of the two-dimensional hard-disk system”, Europhys. Lett., 42:3 (1998), 277–281 | DOI
[41] A. Jaster, “The hexatic phase of the two-dimensional hard disk system”, Phys. Lett. A, 330:1–2 (2004), 120–125 | DOI
[42] K. Bagchi, H. C. Andersen, W. Swope, “Computer simulation study of the melting transition in two dimensions”, Phys. Rev. Lett., 76:2 (1996), 255–258 | DOI
[43] K. Bagchi, H. C. Andersen, W. Swope, “Observation of a two-stage melting transition in two dimensions”, Phys. Rev. E, 53:4 (1996), 3794–3803 | DOI
[44] K. Binder, S. Sengupta, P. Nielaba, “liquid-solid transition of hard discs: first-order transition or Kosterlitz–Thouless–Halperin–Nelson–Young scenario?”, J. Phys.: Condens. Matter, 14:9 (2002), 2323–2333 | DOI
[45] R. K. Kalia, P. Vashishta, “Interfacial colloidal crystals and melting transition”, J. Phys. C, 14:22 (1981), L643–L648 | DOI
[46] J. Q. Broughton, G. H. Gilmer, J. D. Weeks, “Molecular-dynamics study of melting in two dimensions. Inverse-twelfth-power interaction”, Phys. Rev. B, 25:7 (1982), 4651–4669 | DOI
[47] R. S. Singh, M. Santra, B. Bagchi, “Anisotropy induced crossover from weakly to strongly first order melting of two dimensional solids”, J. Chem. Phys., 138:18 (2013), 184507 | DOI
[48] K. Wierschem, E. Manousakis, “Simulation of melting of two-dimensional Lennard-Jones solids”, Phys. Rev. B, 83:21 (2011), 214108 | DOI
[49] N. Gribova, A. Arnold, T. Schilling, C. Holm, “How close to two dimensions does a Lennard-Jones system need to be to produce a hexatic phase?”, J. Chem. Phys., 135:5 (2011), 054514 | DOI
[50] Yu. E. Lozovik, V. M. Farztdinov, “Oscillation spectra and phase diagram of two-dimensional electron crystal: ‘new’ $(3+4)$-self-consistent approximation”, Solid State Commun., 54:8 (1985), 725–728 | DOI
[51] Yu. E. Lozovik, V. M. Farztdinov, B. Abdullaev, S. A. Kucherov, “Melting and spectra of two-dimensional classical crystals”, Phys. Lett. A, 112:1–2 (1985), 61–63 | DOI
[52] E. P. Bernard, W. Krauth, “Two-step melting in two dimensions: first-order liquid-hexatic transition”, Phys. Rev. Lett., 107:15 (2011), 155704, 4 pp. | DOI
[53] M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, W. Krauth, “Hard-disk equation of state: first-order liquid-hexatic transition in two dimensions with three simulation methods”, Phys. Rev. E, 87:4 (2013), 042134, 8 pp. | DOI
[54] W. Qi, A. P. Gantapara, M. Dijkstra, “Two-stage melting induced by dislocations and grain boundaries in monolayers of hard spheres”, Soft Matter, 10 (2014), 5449–5457 | DOI
[55] S. C. Kapfer, W. Krauth, “Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions”, Phys. Rev. Lett., 114:3 (2015), 035702, 5 pp. | DOI | MR
[56] W.-K. Qi, S.-M. Qin, X.-Y. Zhao, Y. Chen, “Coexistence of hexatic and isotropic phases in two-dimensional Yukawa systems”, J. Phys.: Condens. Matter, 20:24 (2008), 245102, 9 pp. | DOI
[57] W. Qi, M. Dijkstra, “Destabilisation of the hexatic phase in systems of hard disks by quenched disorder due to pinning on a lattice”, Soft Matter, 11 (2015), 2852–2856 | DOI
[58] M. Zu, J. Liu, H. Tong, N. Xu, “Density affects the nature of the hexatic-liquid transition in two-dimensional melting of soft-core systems”, Phys. Rev. Lett., 117:8 (2016), 085702, 5 pp., arXiv: 1605.00747 | DOI
[59] V. N. Ryzhov, “Statisticheskaya teoriya kristallizatsii v klassicheskikh sistemakh”, TMF, 55:1 (1983), 128–136 | DOI | MR
[60] V. N. Ryzhov, E. E. Tareeva, “Towards a statistical theory of freezing”, Phys. Lett. A, 75:1–2 (1979), 88–90 | DOI
[61] V. N. Ryzhov, E. E. Tareeva, “K statisticheskoi teorii kristallizatsii v sisteme tverdykh sfer”, TMF, 48:3 (1981), 416–423 | DOI | MR
[62] M. Baus, “The present status of the density-functional theory of the liquid-solid transition”, J. Phys.: Condens. Matter, 2:9 (1990), 2111–2126 | DOI
[63] Y. Singh, “Density-functional theory of freezing and properties of the ordered phase”, Phys. Rep., 207:6 (1991), 351–444 | DOI
[64] V. N. Ryzhov, E. E. Tareeva, “Mikroskopicheskii podkhod k vychisleniyu modulei uprugosti i modulya Franka v teorii dvumernogo plavleniya”, TMF, 92:2 (1992), 331–343 | DOI | MR
[65] V. N. Ryzhov, S. M. Stishov, “A liquid-liquid phase transition in the ‘collapsing’ hard sphere system”, ZhETF, 122:4 (2002), 820–823 | DOI
[66] V. N. Ryzhov, S. M. Stishov, “Repulsive step potential: a model for a liquid-liquid phase transition”, Phys. Rev. E, 67:1 (2003), 010201, 4 pp. | DOI
[67] S. M. Stishov, “On the phase diagram of a 'collapsing' hard-sphere system”, Phil. Mag. B, 82:11 (2002), 1287–1290 | DOI
[68] Y. D. Fomin, N. V. Gribova, V. N. Ryzhov, S. M. Stishov, D. Frenkel, “Quasibinary amorphous phase in a three-dimensional system of particles with repulsive-shoulder interactions”, J. Chem. Phys., 129:6 (2008), 064512 | DOI
[69] S. V. Buldyrev, G. Malescio, C. A. Angell, N. Giovambattista, S. Prestipino, F. Saija, H. E. Stanley, L. Xu, “Unusual phase behavior of one-component systems with two-scale isotropic interactions”, J. Phys.: Condens. Matter, 21:50 (2009), 504106 | DOI
[70] P. Vilaseca, G. Franzese, “Isotropic soft-core potentials with two characteristic length scales and anomalous behaviour”, J. Non-Crystalline Solids, 357:2 (2011), 419–426 | DOI
[71] N. V. Gribova, Y. D. Fomin, D. Frenkel, V. N. Ryzhov, “Waterlike thermodynamic anomalies in a repulsive-shoulder potential system”, Phys. Rev. E, 79:5 (2009), 051202, 6 pp. | DOI
[72] Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, “Inversion of sequence of diffusion and density anomalies in core-softened systems”, J. Chem. Phys., 135:23 (2011), 234502 | DOI
[73] Y. D. Fomin, E. N. Tsiok, V. N. Ryzhov, “Core-softened system with attraction: trajectory dependence of anomalous behavior”, J. Chem. Phys., 135:12 (2011), 124512 | DOI
[74] R. E. Ryltsev, N. M. Chtchelkatchev, V. N. Ryzhov, “Superfragile glassy dynamics of a one-component system with isotropic potential: competition of diffusion and frustration”, Phys. Rev. Lett., 110:2 (2013), 025701, 5 pp. | DOI
[75] Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, “Silicalike sequence of anomalies in core-softened systems”, Phys. Rev. E, 87:4 (2013), 042122, 5 pp. | DOI
[76] E. N. Tsiok, Yu. D. Fomin, V. N. Ryzhov, “Influence of random pinning on melting scenario of two-dimensional core-softened potential system”, arXiv: 1608.05232
[77] V. N. Ryzhov, E. E. Tareyeva, “Bond orientational order in simple liquids”, J. Phys. C: Solid State Phys., 21:5 (1988), 819–824 | DOI
[78] V. N. Ryzhov, “Local structure and bond orientational order in a Lennard-Jones liquid”, J. Phys.: Condens. Matter, 2:26 (1990), 5855–5865 | DOI
[79] J.-P. Hansen, I. R. McDonald, Theory of Simple Liquids, Academic Press, New York, 1986 | Zbl
[80] R. Lovett, “On the stability of a fluid toward solid formation”, J. Chem. Phys., 66:3 (1977), 1225 | DOI
[81] V. N. Ryzhov, E. E. Tareeva, Yu. D. Fomin, “Osobennost tipa ‘lastochkin khvost’ i perekhod steklo–steklo v sisteme kollapsiruyuschikh tverdykh sfer”, TMF, 167:2 (2011), 284–294 | DOI | DOI | Zbl
[82] V. V. Brazhkin, Yu. D. Fomin, V. N. Ryzhov, E. E. Tareyeva, E. N. Tsiok, “True Widom line for a square-well system”, Phys. Rev. E, 89:4 (2014), 042136, 6 pp. | DOI
[83] J. L. Colot, M. Baus, “The freezing of hard disks and hyperspheres”, Phys. Lett. A, 119:3 (1986), 135–139 | DOI
[84] M. Baus, J. L. Colot, “Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions”, Phys. Rev. A, 36:8 (1987), 3912–3925 | DOI