Four-momentum of the field of a point charge in nonlinear electrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 417-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the four-momentum of the electromagnetic field of a point charge is a four-vector if the field Lagrangian is nonlinear (with respect to field invariants) and the field mass is finite. We define the class of Lagrangians leading to a bound on the field mass.
Keywords: nonlinear electrodynamics, point charge, field mass, field four-momentum.
@article{TMF_2017_191_3_a3,
     author = {M. B. Ependiev},
     title = {Four-momentum of the~field of a~point charge in nonlinear electrodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {417--423},
     year = {2017},
     volume = {191},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a3/}
}
TY  - JOUR
AU  - M. B. Ependiev
TI  - Four-momentum of the field of a point charge in nonlinear electrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 417
EP  - 423
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a3/
LA  - ru
ID  - TMF_2017_191_3_a3
ER  - 
%0 Journal Article
%A M. B. Ependiev
%T Four-momentum of the field of a point charge in nonlinear electrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 417-423
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a3/
%G ru
%F TMF_2017_191_3_a3
M. B. Ependiev. Four-momentum of the field of a point charge in nonlinear electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 417-423. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a3/

[1] M. B. Ependiev, Teoreticheskie osnovy fiziki, IKI, M.–Izhevsk, 2013

[2] M. B. Ependiev, “Klassicheskaya elektrodinamika uskorenno dvizhuschegosya protyazhennogo zaryada”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 6 (2014), 40–45 ; M. B. Ependiev, “On the foundations of the classical relativistic theory of the field of an accelerated extended charge”, J. Modern Phys., 6 (2015), 601–609 | DOI | MR | DOI

[3] V. B. Berestetskii, E. M. Lifshits, A. P. Pitaevskii, Kvantovaya elektrodinamika, Nauka, M., 1980 | MR

[4] D. M. Gitman, A. E. Shabad, A. A. Shishmarev, Moving point charge as a soliton in nonlinear electrodynamics, arXiv: 1509.06401

[5] C. V. Costa, D. M. Gitman, A. E. Shabad, “Finite field-energy of a point charge in QED”, Phys. Scr., 90:7 (2015), 074012, 6 pp., arXiv: 1312.0447 | DOI