Electrodynamics with charged strings
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 407-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that in a four-dimensional space–time a complex scalar field can be associated with a one-dimensionally extended object, called a charged string. The string is said to be charged because the complex scalar field describing it interacts with an electromagnetic field. A charged string is characterized by an extension of the symmetry group of the charge space to a group of stretch rotations. We propose relativistically invariant and gauge-invariant equations describing the interaction of a complex scalar field with an electromagnetic field, and each solution of them corresponds to a charged string. We achieve this by introducing the notion of a charged string index, which, as verified, takes only integer values. We establish equations from which it follows that charged strings fit naturally into the framework of the Maxwell–Dirac electrodynamics.
Keywords: electrodynamics, magnetic charge, anion, string, charged string.
@article{TMF_2017_191_3_a2,
     author = {A. B. Pestov},
     title = {Electrodynamics with charged strings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {407--416},
     year = {2017},
     volume = {191},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a2/}
}
TY  - JOUR
AU  - A. B. Pestov
TI  - Electrodynamics with charged strings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 407
EP  - 416
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a2/
LA  - ru
ID  - TMF_2017_191_3_a2
ER  - 
%0 Journal Article
%A A. B. Pestov
%T Electrodynamics with charged strings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 407-416
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a2/
%G ru
%F TMF_2017_191_3_a2
A. B. Pestov. Electrodynamics with charged strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 407-416. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a2/

[1] P. A. M. Dirac, “Quantised singularities in the electromagnetic field”, Proc. Roy. Soc. London Ser. A, 133:821 (1931), 60–72 | DOI | Zbl

[2] F. Wilczek, “Two applications of axion electrodynamics”, Phys. Rev. Lett., 58:18 (1987), 1799–1802 | DOI

[3] G. 't Hooft, “Magnetic monopoles in unified gauge theories”, Nucl. Phys. B, 79:2 (1974), 276–284 | DOI | MR

[4] T. T. Wu, C. N. Yang, “Concept of nonintegrable phase factors and global formulation of gauge fields”, Phys. Rev. D, 12:12 (1975), 3845–3857 | DOI | MR

[5] Z. F. Ezawa, Quantum Hall Effects, World Sci., Singapore, 2000 | MR | Zbl

[6] E. A. Kochetov, V. A. Osipov, “Gauge theory of disclinations on fluctuating elastic surfaces”, J. Phys. A: Math. Gen., 32:10 (1999), 1961–1972 | DOI | MR | Zbl

[7] V. A. Osipov, “Topological defects in carbon nanocrystals”, Topology in Condensed Matter, Papers based on the presentation at the 3-month seminar programm “Topology in condensed matter” (Dresden, Germany, May 8 – July 31, 2002), Springer Series in Solid State Science, 150, ed. M. I. Monastyrsky, Springer, Berlin, 2006, 93–116 | DOI | MR | Zbl

[8] M. Tajmar, “Electrodynamics in superconductors explained by Proca equations”, Phys. Lett. A, 372:18 (2008), 3289–3291 | DOI | Zbl

[9] A. Vilenkin, “Cosmic strings and domain walls”, Phys. Rep., 121:5 (1985), 263–315 | DOI | MR | Zbl

[10] E. Witten, “Superconducting strings”, Nucl. Phys. B, 249:4 (1985), 557–592 | DOI

[11] V. V. Nesterenko, I. G. Pirozhenko, “Vacuum energy in conical space with additional boundary conditions”, Class. Quantum Grav., 28:17 (2011), 175020, 26 pp. | DOI | MR | Zbl

[12] B. M. Barbashov, V. V. Nesterenko, Introduction to the Relativistic String Theory, World Sci., Singapore, 1990 | MR

[13] H. B. Nielsen, P. Olesen, “Vortex-line models for dual strings”, Nucl. Phys. B, 61 (1973), 45–61 | DOI

[14] F. Wilczek, “Magnetic flux, angular momentum, and statistics”, Phys. Rev. Lett., 48:17 (1982), 1144–1145 | DOI