Globally superintegrable Hamiltonian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 389-406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generalization of the Mishchenko–Fomenko theorem for symplectic superintegrable systems to the case of an arbitrary, not necessarily compact, invariant submanifold allows giving a global description of a superintegrable Hamiltonian system, which can be split into several nonequivalent globally superintegrable systems on nonoverlapping open submanifolds of the symplectic phase manifold having both compact and noncompact invariant submanifolds. A typical example of such a composition of globally superintegrable systems is motion in a centrally symmetric field, in particular, the two-dimensional Kepler problem.
Keywords: completely integrable system, superintegrable system, centrally symmetric potential, Kepler system.
Mots-clés : action–angle variable
@article{TMF_2017_191_3_a1,
     author = {A. Kurov and G. A. Sardanashvily},
     title = {Globally superintegrable {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {389--406},
     year = {2017},
     volume = {191},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a1/}
}
TY  - JOUR
AU  - A. Kurov
AU  - G. A. Sardanashvily
TI  - Globally superintegrable Hamiltonian systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 389
EP  - 406
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a1/
LA  - ru
ID  - TMF_2017_191_3_a1
ER  - 
%0 Journal Article
%A A. Kurov
%A G. A. Sardanashvily
%T Globally superintegrable Hamiltonian systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 389-406
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a1/
%G ru
%F TMF_2017_191_3_a1
A. Kurov; G. A. Sardanashvily. Globally superintegrable Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 389-406. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a1/

[1] A. S. Mischenko, A. T. Fomenko, “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego pril., 12:2 (1978), 46–56 | DOI | MR | Zbl

[2] A. V. Bolsinov, B. Jovanović, “Noncommutative integrability, moment map and geodesic flows”, Ann. Global Anal. Geom., 23:4 (2003), 305–322 | DOI | MR | Zbl

[3] F. Fassò, “Francesco Superintegrable Hamiltonian systems: geometry and perturbations”, Acta Appl. Math., 87:1–3 (2005), 93–121 | DOI | MR | Zbl

[4] V. I. Arnold (ed.), Dynamical Systems III, IV, Springer, Berlin, 1990 | MR

[5] V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Ergebnisse der Mathematik und ihrer Grenzgebiete, 24, Springer, Berlin, 1993 | DOI | MR | Zbl

[6] G. Giachetta, L. Mangiarotti, G. Sardanashvily, “Bi-Hamiltonian partially integrable systems”, J. Math. Phys., 44:5 (2003), 1984–1997 | DOI | MR | Zbl

[7] E. Fiorani, G. Giachetta, G. Sardanashvily, “The Liouville–Arnold–Nekhoroshev theorem for non-compact invariant manifolds”, J. Phys. A, 36:7 (2003), L101–L107 | DOI | MR | Zbl

[8] E. Fiorani, G. Sardanashvily, “Noncommutative integrability on noncompact invariant manifolds”, J. Phys. A, 39:45 (2006), 14035–14042 | DOI | MR | Zbl

[9] G. Sardanashvily, “Superintegrable Hamiltonian systems with noncompact invariant submanifolds: Kepler system”, Internat. J. Geom. Methods Modern Phys., 6:8 (2009), 1391–1414 | DOI | MR | Zbl

[10] G. Sardanashvily, Handbook of Integrable Hamiltonian Systems, URSS, Moscow, 2015

[11] E. Fiorani, G. Sardanashvily, “Global action-angle coordinates for completely integrable systems with noncompact invariant submanifolds”, J. Math. Phys., 48:3 (2007), 032901, 9 pp. | DOI | MR | Zbl

[12] J. Duistermaat, “On global action-angle coordinates”, Commun. Pure Appl. Math., 33:6 (1980), 687–706 | DOI | MR | Zbl

[13] P. Dazord, T. Delzant, “Le probleme general des variables actions-angles”, J. Differ. Geom., 26:2 (1987), 223–251 | DOI | MR | Zbl

[14] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser, Basel, 1994 | DOI | MR | Zbl

[15] R. S. Palais, A Global Formulation of the Lie Theory of Transformation Groups, Memoirs of the American Mathematical Society, 22, AMS, Providence, RI, 1957 | MR | Zbl

[16] G. Meigniez, “Submersions, fibrations and bundles”, Trans. Amer. Math. Soc., 354:9 (2002), 3771–3787 | DOI | MR | Zbl

[17] V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[18] H. J. Sussmann, “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl

[19] R. H. Cushman, L. M. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser, Basel, 1997 | DOI | MR | Zbl

[20] E. Fiorani, “Momentum maps, independent first integrals and integrability for central potentials”, Internat. J. Geom. Methods Modern Phys., 6:8 (2009), 1323–1341 | DOI | MR | Zbl

[21] A. Kurov, G. Sardanashvily, Partially superintegrable systems on Poisson manifolds, arXiv: 1606.03868