Globally superintegrable Hamiltonian systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 389-406
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The generalization of the Mishchenko–Fomenko theorem for symplectic superintegrable systems to the case of an arbitrary, not necessarily compact, invariant submanifold allows giving a global description of a superintegrable Hamiltonian system, which can be split into several nonequivalent globally superintegrable systems on nonoverlapping open submanifolds of the symplectic phase manifold having both compact and noncompact invariant submanifolds. A typical example of such a composition of globally superintegrable systems is motion in a centrally symmetric field, in particular, the two-dimensional Kepler problem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
completely integrable system, superintegrable system,
action–angle variable, centrally symmetric potential, Kepler system.
                    
                  
                
                
                @article{TMF_2017_191_3_a1,
     author = {A. Kurov and G. A. Sardanashvily},
     title = {Globally superintegrable {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {389--406},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a1/}
}
                      
                      
                    A. Kurov; G. A. Sardanashvily. Globally superintegrable Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 389-406. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a1/
