Invariant manifolds and Lax pairs for integrable nonlinear chains
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 369-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue the previously started study of the development of a direct method for constructing the Lax pair for a given integrable equation. This approach does not require any addition assumptions about the properties of the equation. As one equation of the Lax pair, we take the linearization of the considered nonlinear equation, and the second equation of the pair is related to its generalized invariant manifold. The problem of seeking the second equation reduces to simple but rather cumbersome calculations and, as examples show, is effectively solvable. It is remarkable that the second equation of this pair allows easily finding a recursion operator describing the hierarchy of higher symmetries of the equation. At first glance, the Lax pairs thus obtained differ from usual ones in having a higher order or a higher matrix dimensionality. We show with examples that they reduce to the usual pairs by reducing their order. As an example, we consider an integrable double discrete system of exponential type and its higher symmetry for which we give the Lax pair and construct the conservation laws.
Mots-clés : Lax pair
Keywords: integrable chain, higher symmetry, invariant manifold, recursion operator.
@article{TMF_2017_191_3_a0,
     author = {I. T. Habibullin and A. R. Khakimova},
     title = {Invariant manifolds and {Lax} pairs for integrable nonlinear chains},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--388},
     year = {2017},
     volume = {191},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a0/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - A. R. Khakimova
TI  - Invariant manifolds and Lax pairs for integrable nonlinear chains
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 369
EP  - 388
VL  - 191
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a0/
LA  - ru
ID  - TMF_2017_191_3_a0
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A A. R. Khakimova
%T Invariant manifolds and Lax pairs for integrable nonlinear chains
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 369-388
%V 191
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a0/
%G ru
%F TMF_2017_191_3_a0
I. T. Habibullin; A. R. Khakimova. Invariant manifolds and Lax pairs for integrable nonlinear chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 369-388. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a0/

[1] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[2] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl

[3] H. D. Wahlquist, F. B. Estabrook, “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16:1 (1975), 1–7 | DOI | MR | Zbl

[4] F. W. Nijhoff, A. J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasgow Math. J., 43:A (2001), 109–123 | DOI | MR

[5] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Int. Math. Res. Notices, 2002:11 (2002), 573–611 | DOI | MR | Zbl

[6] F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297:1–2 (2002), 49–58 | DOI | MR | Zbl

[7] R. I. Yamilov, “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, ed. A. B. Shabat, BashGU, Ufa, 1982, 95–114 | Zbl

[8] P. Xenitidis, “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Proceedings of IV Workshop “Group Analysis of Differential Equations and Integrable Systems” (GADEIS–IV) (Protaras, Cyprus, 26–30 October, 2008), eds. N. Ivanova, C. Sophocleous, R. Popovych, P. Damianou, A. Nikitin, University of Patras, Greece, 2008, 226–242, arXiv: 0902.3954 | MR

[9] F. Khanizade, A. V. Mikhailov, Dzh. P. Vang, “Preobrazovaniya Darbu i rekursionnye operatory dlya differentsialno-raznostnykh uravnenii”, TMF, 177:3 (2013), 387–440 | DOI | DOI | Zbl

[10] I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A: Math. Theor., 49:3 (2016), 035202, 35 pp. | DOI | MR | Zbl

[11] R. I. Yamilov, “Klassifikatsiya diskretnykh evolyutsionnykh uravnenii”, UMN, 38:6 (1983), 155–156

[12] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach”, Commun. Math. Phys., 233:3 (2003), 513–543 | DOI | MR | Zbl

[13] B. I. Suleimanov, “ ‘Kvantovaya’ linearizatsiya uravnenii Penleve kak komponenta ikh $L,A$ par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135 | MR

[14] H. X. Ibragimov, A. B. Shabat, “Uravnenie Kortevega–de Friza s gruppovoi tochki zreniya”, Dokl. AN SSSR, 244:1 (1979), 56–61 | MR

[15] N. Kh. Ibragimov, A. B. Shabat, “Evolyutsionnye uravneniya s netrivialnoi gruppoi Li–Beklunda”, Funkts. analiz i ego pril., 14:1 (1980), 25–36 | DOI | MR | Zbl

[16] R. Garifullin, I. Habibullin, M. Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 062, 33 pp. | DOI | MR | Zbl

[17] S. I. Svinolupov, R. I. Yamilov, “The multi-field Schrödinger lattices”, Phys. Lett. A, 160:6 (1991), 548–552 | DOI | MR

[18] R. I. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR | Zbl

[19] M. Gürses, A. Karasu, V. V. Sokolov, “On construction of recursion operators from Lax representation”, J. Math. Phys., 40:12 (1999), 6473–6490 | DOI | MR | Zbl

[20] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | DOI | MR | Zbl

[21] I. T. Khabibullin, “Diskretnaya sistema Zakharova–Shabata i integriruemye uravneniya”, Zap. nauchn. sem. LOMI, 146 (1985), 137–146 | MR | Zbl

[22] A. V. Mikhailov, “Formal diagonalisation of Lax–Darboux schemes”, Model. i analiz inform. sistem, 22:6 (2015), 795–817 | DOI | MR

[23] A. Kuniba, T. Nakanishi, J. Suzuki, “$T$-systems and $Y$-systems in integrable systems”, J. Phys. A: Math. Theor., 44:10 (2011), 103001, 146 pp., arXiv: 1010.1344 | DOI | MR | Zbl

[24] R. S. Ward, “Discrete Toda field equations”, Phys. Lett. A, 199:1–2 (1995), 45–48 | DOI | MR | Zbl

[25] R. Willox, M. Hattori, “Discretisations of constrained KP hierarchies”, J. Math. Sci. Univ. Tokyo, 22:3 (2015), 613–661, arXiv: 1406.5828 | MR | Zbl