Keywords: integrable chain, higher symmetry, invariant manifold, recursion operator.
@article{TMF_2017_191_3_a0,
author = {I. T. Habibullin and A. R. Khakimova},
title = {Invariant manifolds and {Lax} pairs for integrable nonlinear chains},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {369--388},
year = {2017},
volume = {191},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a0/}
}
TY - JOUR AU - I. T. Habibullin AU - A. R. Khakimova TI - Invariant manifolds and Lax pairs for integrable nonlinear chains JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 369 EP - 388 VL - 191 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a0/ LA - ru ID - TMF_2017_191_3_a0 ER -
I. T. Habibullin; A. R. Khakimova. Invariant manifolds and Lax pairs for integrable nonlinear chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 3, pp. 369-388. http://geodesic.mathdoc.fr/item/TMF_2017_191_3_a0/
[1] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl
[2] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl
[3] H. D. Wahlquist, F. B. Estabrook, “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16:1 (1975), 1–7 | DOI | MR | Zbl
[4] F. W. Nijhoff, A. J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasgow Math. J., 43:A (2001), 109–123 | DOI | MR
[5] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Int. Math. Res. Notices, 2002:11 (2002), 573–611 | DOI | MR | Zbl
[6] F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297:1–2 (2002), 49–58 | DOI | MR | Zbl
[7] R. I. Yamilov, “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, ed. A. B. Shabat, BashGU, Ufa, 1982, 95–114 | Zbl
[8] P. Xenitidis, “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Proceedings of IV Workshop “Group Analysis of Differential Equations and Integrable Systems” (GADEIS–IV) (Protaras, Cyprus, 26–30 October, 2008), eds. N. Ivanova, C. Sophocleous, R. Popovych, P. Damianou, A. Nikitin, University of Patras, Greece, 2008, 226–242, arXiv: 0902.3954 | MR
[9] F. Khanizade, A. V. Mikhailov, Dzh. P. Vang, “Preobrazovaniya Darbu i rekursionnye operatory dlya differentsialno-raznostnykh uravnenii”, TMF, 177:3 (2013), 387–440 | DOI | DOI | Zbl
[10] I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A: Math. Theor., 49:3 (2016), 035202, 35 pp. | DOI | MR | Zbl
[11] R. I. Yamilov, “Klassifikatsiya diskretnykh evolyutsionnykh uravnenii”, UMN, 38:6 (1983), 155–156
[12] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach”, Commun. Math. Phys., 233:3 (2003), 513–543 | DOI | MR | Zbl
[13] B. I. Suleimanov, “ ‘Kvantovaya’ linearizatsiya uravnenii Penleve kak komponenta ikh $L,A$ par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135 | MR
[14] H. X. Ibragimov, A. B. Shabat, “Uravnenie Kortevega–de Friza s gruppovoi tochki zreniya”, Dokl. AN SSSR, 244:1 (1979), 56–61 | MR
[15] N. Kh. Ibragimov, A. B. Shabat, “Evolyutsionnye uravneniya s netrivialnoi gruppoi Li–Beklunda”, Funkts. analiz i ego pril., 14:1 (1980), 25–36 | DOI | MR | Zbl
[16] R. Garifullin, I. Habibullin, M. Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 062, 33 pp. | DOI | MR | Zbl
[17] S. I. Svinolupov, R. I. Yamilov, “The multi-field Schrödinger lattices”, Phys. Lett. A, 160:6 (1991), 548–552 | DOI | MR
[18] R. I. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR | Zbl
[19] M. Gürses, A. Karasu, V. V. Sokolov, “On construction of recursion operators from Lax representation”, J. Math. Phys., 40:12 (1999), 6473–6490 | DOI | MR | Zbl
[20] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | DOI | MR | Zbl
[21] I. T. Khabibullin, “Diskretnaya sistema Zakharova–Shabata i integriruemye uravneniya”, Zap. nauchn. sem. LOMI, 146 (1985), 137–146 | MR | Zbl
[22] A. V. Mikhailov, “Formal diagonalisation of Lax–Darboux schemes”, Model. i analiz inform. sistem, 22:6 (2015), 795–817 | DOI | MR
[23] A. Kuniba, T. Nakanishi, J. Suzuki, “$T$-systems and $Y$-systems in integrable systems”, J. Phys. A: Math. Theor., 44:10 (2011), 103001, 146 pp., arXiv: 1010.1344 | DOI | MR | Zbl
[24] R. S. Ward, “Discrete Toda field equations”, Phys. Lett. A, 199:1–2 (1995), 45–48 | DOI | MR | Zbl
[25] R. Willox, M. Hattori, “Discretisations of constrained KP hierarchies”, J. Math. Sci. Univ. Tokyo, 22:3 (2015), 613–661, arXiv: 1406.5828 | MR | Zbl