Integrable structures of dispersionless systems and differential geometry
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 254-274
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We develop the theory of Whitham-type hierarchies integrable by hydrodynamic reductions as a theory of certain differential-geometric objects. As an application, we construct Gibbons–Tsarev systems associated with the moduli space of algebraic curves of arbitrary genus and prove that the universal Whitham hierarchy is integrable by hydrodynamic reductions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
integrability of quasilinear systems, hydrodynamic reduction, Gibbons–Tsarev system, Whitham-type hierarchy, moduli space of Riemann surfaces.
                    
                  
                
                
                @article{TMF_2017_191_2_a9,
     author = {A. V. Odesskii},
     title = {Integrable structures of dispersionless systems and differential geometry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--274},
     publisher = {mathdoc},
     volume = {191},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/}
}
                      
                      
                    TY - JOUR AU - A. V. Odesskii TI - Integrable structures of dispersionless systems and differential geometry JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 254 EP - 274 VL - 191 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/ LA - ru ID - TMF_2017_191_2_a9 ER -
A. V. Odesskii. Integrable structures of dispersionless systems and differential geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 254-274. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/
