Integrable structures of dispersionless systems and differential geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 254-274

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop the theory of Whitham-type hierarchies integrable by hydrodynamic reductions as a theory of certain differential-geometric objects. As an application, we construct Gibbons–Tsarev systems associated with the moduli space of algebraic curves of arbitrary genus and prove that the universal Whitham hierarchy is integrable by hydrodynamic reductions.
Keywords: integrability of quasilinear systems, hydrodynamic reduction, Gibbons–Tsarev system, Whitham-type hierarchy, moduli space of Riemann surfaces.
@article{TMF_2017_191_2_a9,
     author = {A. V. Odesskii},
     title = {Integrable structures of dispersionless systems and differential geometry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--274},
     publisher = {mathdoc},
     volume = {191},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/}
}
TY  - JOUR
AU  - A. V. Odesskii
TI  - Integrable structures of dispersionless systems and differential geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 254
EP  - 274
VL  - 191
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/
LA  - ru
ID  - TMF_2017_191_2_a9
ER  - 
%0 Journal Article
%A A. V. Odesskii
%T Integrable structures of dispersionless systems and differential geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 254-274
%V 191
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/
%G ru
%F TMF_2017_191_2_a9
A. V. Odesskii. Integrable structures of dispersionless systems and differential geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 254-274. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/