Integrable structures of dispersionless systems and differential geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 254-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop the theory of Whitham-type hierarchies integrable by hydrodynamic reductions as a theory of certain differential-geometric objects. As an application, we construct Gibbons–Tsarev systems associated with the moduli space of algebraic curves of arbitrary genus and prove that the universal Whitham hierarchy is integrable by hydrodynamic reductions.
Keywords: integrability of quasilinear systems, hydrodynamic reduction, Gibbons–Tsarev system, Whitham-type hierarchy, moduli space of Riemann surfaces.
@article{TMF_2017_191_2_a9,
     author = {A. V. Odesskii},
     title = {Integrable structures of dispersionless systems and differential geometry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--274},
     year = {2017},
     volume = {191},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/}
}
TY  - JOUR
AU  - A. V. Odesskii
TI  - Integrable structures of dispersionless systems and differential geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 254
EP  - 274
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/
LA  - ru
ID  - TMF_2017_191_2_a9
ER  - 
%0 Journal Article
%A A. V. Odesskii
%T Integrable structures of dispersionless systems and differential geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 254-274
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/
%G ru
%F TMF_2017_191_2_a9
A. V. Odesskii. Integrable structures of dispersionless systems and differential geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 254-274. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a9/

[1] V. E. Zakharov, “Dispersionless limit of integrable systems in $2+1$ dimensions”, Singular Limits of Dispersive Waves (Lyons, France, July 8–12, 1991), NATO ASI Series. Ser. B. Physics, 320, eds. N. M. Ercolani, I. R. Gabitov, C. D. Levermore, D. Serre, Plenum, New York, 1994, 165–174 | DOI | MR | Zbl

[2] I. M. Krichever, “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Commun. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR | Zbl

[3] J. Gibbons, S. P. Tsarev, “Reductions of Benney's equations”, Phys. Lett. A, 211:1 (1996), 19–24 ; “Conformal maps and reductions of the Benney equations”, Phys. Lett. A, 258:4–6 (1999), 263–270 | DOI | MR | Zbl | DOI | MR | Zbl

[4] E. V. Ferapontov, K. R. Khusnutdinova, “On integrability of $(2+1)$-dimensional quasilinear systems”, Commun. Math. Phys., 248:1 (2004), 187–206 | DOI | MR | Zbl

[5] E. V. Ferapontov, K. R. Khusnutdinova, “The characterization of 2-component $({2+1})$-dimensional integrable systems of hydrodynamic type”, J. Phys. A: Math. Gen., 37:8 (2004), 2949–2963 | DOI | MR | Zbl

[6] E. V. Ferapontov, K. R. Khusnutdinova, S. P. Tsarev, “On a class of three-dimensional integrable Lagrangians”, Commun. Math. Phys., 261:1 (2006), 225–243 | DOI | MR | Zbl

[7] A. V. Odesskii, V. V. Sokolov, “Integriruemye $(2+1)$-mernye sistemy gidrodinamicheskogo tipa”, TMF, 163:2 (2010), 179–221 | DOI | DOI | Zbl

[8] A. V. Odesskii, V. V. Sokolov, “Integrable pseudopotentials related to generalized hypergeometric functions”, Selecta Math. (N. S.), 16:1 (2010), 145–172 | DOI | MR | Zbl

[9] I. M. Krichever, “Metod usredneniya dlya dvumernykh “integriruemykh” uravnenii”, Funkts. analiz i ego pril., 22:3 (1988), 37–52 | DOI | MR | Zbl

[10] A. V. Odesskii, “A family of $(2+1)$-dimensional hydrodynamic type systems possessing a pseudopotential”, Selecta Math. (N. S.), 13:4 (2008), 727–742 | DOI | MR

[11] A. Odesskii, “A simple construction of integrable Whitham type hierarchies”, Geometric Methods in Physics, XXXII Workshop (Białowie.{z}a, Poland, June 30 – July 6, 2013), Trends in Mathematics, eds. P. Kielanowski, P. Bieliavsky, A. Odesskii, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Birkhäuser, Basel, 2014, 195–208 | DOI | MR | Zbl

[12] B. A. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lectures given at the 1st Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) (Montecatini Terme, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[13] J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, 352, Springer, Berlin–New York, 1973 | DOI | MR | Zbl

[14] D. Mumford, Tata Lectures on Theta II: Jacobian theta functions and differential equations, Progress in Mathematics, 43, Birkhäuser, Boston, MA, 1984 | DOI | MR | Zbl

[15] A. Kokotov, D. Korotkin, “Tau-functions on spaces of Abelian differentials and higher genus generalizations of Ray–Singer formula”, J. Differ. Geom., 82:1 (2009), 35–100 | DOI | MR | Zbl

[16] H. E. Rauch, “Weierstrass points, branch points, and moduli of Riemann surfaces”, Commun. Pure Appl. Math., 12:3 (1959), 543–560 | DOI | MR

[17] J. D. Fay, Kernel functions, analytic torsion, and moduli spaces, Memoirs of the American Mathematical Society, 96, No 464, AMS, Providence, RI, 1992 | DOI | MR

[18] K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Springer, Berlin–Heidelberg, 2005 | DOI | MR | Zbl

[19] M. L. Kontsevich, “Algebra Virasoro iprostranstva Teikhmyullera”, Funkts. analiz i ego pril., 21:2 (1987), 78–79 | DOI | MR | Zbl

[20] A. A. Beilinson, V. V. Schechtman, “Determinant bundles and Virasoro algebras”, Commun. Math. Phys., 118:4 (1988), 651–701 | DOI | MR | Zbl

[21] J. Tate, “Residues of differentials on curves”, Ann. Sci. École Norm. Sup. Sér. 4, 1:1 (1968), 149–159 | MR | Zbl

[22] A. Andreotti, A. L. Mayer, “On period relations for Abelian integrals on algebraic curves”, Ann. Scuola Norm. Sup. Pisa, 21:2 (1967), 189–238 | MR | Zbl