Conformal reference frames for Lorentzian manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 243-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a conformal reference frame, i.e., a special projection of the six-dimensional sky bundle of a Lorentzian manifold (or the five-dimensional twistor space) to a three-dimensional manifold. We construct an example, a conformal compactification, for Minkowski space. Based on the complex structure on the skies, we define the celestial transformation of Lorentzian vectors, a kind of spinor correspondence. We express a $1$-form generating the contact structure in the twistor space (when it is smooth) explicitly as a form taking line-bundle values. We prove a theorem on the projection of this $1$-form to the fiberwise normal bundle of a reference frame; its corollary is an equation for the flow of time.
Keywords: Lorentzian manifold, sky, null geodesic, twistor, contact geometry, line bundle, spinor, conformal symmetry, light cone, Penrose compactification.
@article{TMF_2017_191_2_a8,
     author = {I. V. Maresin},
     title = {Conformal reference frames for {Lorentzian} manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {243--253},
     year = {2017},
     volume = {191},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a8/}
}
TY  - JOUR
AU  - I. V. Maresin
TI  - Conformal reference frames for Lorentzian manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 243
EP  - 253
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a8/
LA  - ru
ID  - TMF_2017_191_2_a8
ER  - 
%0 Journal Article
%A I. V. Maresin
%T Conformal reference frames for Lorentzian manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 243-253
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a8/
%G ru
%F TMF_2017_191_2_a8
I. V. Maresin. Conformal reference frames for Lorentzian manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a8/

[1] V. Chernov, S. Nemirovski, “Legendrian links, causality, and the Low conjecture”, Geom. Funct. Anal., 19:5 (2010), 1320–1333, arXiv: 0810.5091 | DOI | MR | Zbl

[2] C. R. LeBrun, “Twistors, ambitwistors and conformal gravity”, Twistors in Mathematics and Physics, London Mathematical Society Lecture Note Series, 156, eds. T. N. Bailey, R. J. Baston, Cambridge Univ. Press, Cambridge, 1990, 71–86 | MR

[3] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Univ. Press, Cambridge, 1973 | MR | Zbl

[4] R. Penrouz, V. Rindler, Spinory i prostranstvo-vremya. Spinornye i tvistornye metody v geometrii prostranstva-vremeni, v. 2, Mir, M., 1988 | MR

[5] V. S. Vladimirov, A. G. Sergeev, “O kompaktifikatsii prostranstva Minkovskogo i kompleksnom analize v trube buduschego”, Ann. Polon. Math., 46:1 (1985), 439–454 | MR | Zbl

[6] R. Penrouz, “Tvistornaya programma”, Tvistory i kalibrovochnye polya, Mir, M., 1983, 13–24 | MR