Keywords: scalar field
@article{TMF_2017_191_2_a15,
author = {I. V. Fomin},
title = {Cosmological inflation models in the~kinetic approximation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {354--365},
year = {2017},
volume = {191},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a15/}
}
I. V. Fomin. Cosmological inflation models in the kinetic approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 354-365. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a15/
[1] A. A. Starobinsky, “A new type of isotropic cosmological models without singularity”, Phys. Lett. B., 91:1 (1980), 99–102 | DOI
[2] A. H. Guth, “Inflationary universe: a possible solution to the horizon and flatness problems”, Phys. Rev. D, 23:2 (1981), 347–356 | DOI
[3] S. J. Perlmutter, G. Aldering, G. Goldhaber et al. (The Supernova Cosmology Project), “Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift Supernovae”, Astrophys. J., 517 (1999), 565–586, arXiv: ; A. G. Riess, A. V. Filippenko, P. Challis et al., “Observational evidence from Supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116:3 (1998), 1009, arXiv: astro-ph/9812133astro-ph/9805201 | DOI | DOI
[4] A. G. Riess, L. G. Strolger, J. Tonry et al., “Type Ia supernova discoveries at $z > 1$ from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution”, Astrophys. J., 607:2 (2004), 665–687, arXiv: astro-ph/0402512 | DOI
[5] D. N. Spergel, L. Verde, H. V. Peiris et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters”, Astrophys. J. Suppl., 148:2 (2003), 175–194, arXiv: astro-ph/0302209 | DOI
[6] A. D. Linde, “Inflationary cosmology”, Particle Physics and Inflationary Cosmology, Proceedings of the First International Symposium (Northeastern University, Boston, MA, March 27–31, 1990), eds. P. Nath, S. Reucroft, World Sci., Singapore, 1990, 635–656 | MR
[7] A. R. Liddle, “Inflation and the cosmic microwave background”, Phys. Rep., 307:1–4 (1998), 53–60, arXiv: astro-ph/9801148 | DOI
[8] P. J. E. Peebles, A. Vilenkin, “Quintessential inflation”, Phys. Rep. D., 59:6 (1999), 063505, 6 pp., arXiv: astro-ph/9810509 | DOI
[9] R. R. Caldwell, R. Dave, P. J. Steinhardt, “Cosmological imprint of an energy component with general equation of state”, Phys. Rev. Lett., 80 (1998), 1582–1585, arXiv: astro-ph/9708069 | DOI
[10] C. Armendáriz-Picón, T. Damour, V. Mukhanov, “$k$-Inflation”, Phys. Lett. B., 458:2–3 (1999), 209–218, arXiv: hep-th/9904075 | DOI | MR | Zbl
[11] C. G. Böhmer, G. Caldera-Cabral, R. Lazkoz, R. Maartens, “Dynamics of dark energy with a coupling to dark matter”, Phys. Rev. D, 78:2 (2008), 023505, 8 pp., arXiv: 0801.1565 | DOI
[12] A. Y. Kamenshchik, U. Moschella, V. Pasquier, “An alternative to quintessence”, Phys. Lett. B., 511:2–4 (2001), 265–268, arXiv: gr-qc/0103004 | DOI | Zbl
[13] P. Singh, M. Sami, N. Dadhich, “Cosmological dynamics of a phantom field”, Phys. Rev. D, 68:2 (2003), 023522, 7 pp., arXiv: hep-th/0305110 | DOI
[14] N. C. Tsamis, R. P. Woodard, “Improved estimates of cosmological perturbations”, Phys. Rev. D, 69:8 (2004), 084005, 14 pp., arXiv: astro-ph/0307463 | DOI
[15] J. Martin, H. Motohashi, T. Suyama, “Ultra slow-roll inflation and the non-Gaussianity consistency relation”, Phys. Rev. D, 87:2 (2013), 023514, 10 pp., arXiv: 1211.0083 | DOI
[16] H. Motohashi, A. A. Starobinsky, J. Yokoyama, “Inflation with a constant rate of roll”, JCAP, 09 (2015), 018, arXiv: 1411.5021 | DOI | MR
[17] N. Bose, A. S. Majumdar, “$k$-essence model of inflation, dark matter, and dark energy”, Phys. Rev. D, 79:10 (2009), 103517, 7 pp., arXiv: 0812.4131 | DOI
[18] T. Chiba, T. Okabe, M. Yamaguchi, “Kinetically driven quintessence”, Phys. Rev. D, 62:2 (2000), 023511, 8 pp., arXiv: astro-ph/9912463 | DOI
[19] A. T. Kruger, J. W. Norbury, “Another exact inflationary solution”, Phys. Rev. D, 61:8 (2000), 087303, 4 pp., arXiv: gr-qc/0004039 | DOI
[20] G. G. Ivanov, Izv. vuzov. Ser. Fizika, 12 (1980), 22–25
[21] D. S. Salopek, J. R. Bond, “Nonlinear evolution of long-wavelength metric fluctuations in inflationary models”, Phys. Rev. D, 42:12 (1990), 3936–3962 | DOI | MR
[22] S. V. Chervon, “Inflationary cosmological models without restrictions on a scalar field potential”, Gen. Relativ. Gravit., 36:7 (2004), 1547–1553 | DOI | MR | Zbl
[23] A. V. Yurov, V. A. Yurov, S. V. Chervon, M. Sami, “Potentsial polnoi energii kak superpotentsial v integriruemykh kosmologicheskikh modelyakh”, TMF, 166:2 (2011), 299–311 | DOI | DOI | Zbl
[24] L. Kofman, A. Linde, A. A. Starobinsky, “Reheating after Inflation”, Phys. Rev. Lett., 73:24 (1994), 3195–3198, arXiv: hep-th/9405187 | DOI
[25] J. García-Bellido, “20+ years of inflation”, Nuc. Phys. B Proc. Suppl., 114 (2003), 13–26 | DOI | Zbl
[26] G. Felder, J. García-Bellido, P. B. Greene, L. Kofman, A. Linde, I. Tkachev, “Dynamics of symmetry breaking and tachyonic preheating”, Phys. Rev. Lett., 87:1 (2001), 011601, 4 pp., arXiv: hep-ph/0012142 | DOI
[27] G. Felder, L. Kofman, A. Linde, “Inflation and preheating in nonoscillatory models”, Phys. Rev.D, 60:10 (1999), 103505, 10 pp., arXiv: hep-ph/9903350 | DOI
[28] L. A. Ureña-López, M. J. Reyes-Ibarra, “On the dynamics of a quadratic scalar field potential”, Internat. J. Modern Phys. D, 18:4 (2009), 621–634, arXiv: 0709.3996 | DOI | Zbl
[29] T. J. Zhang, Y. G. Shen, “Quantum cosmology with a complex $\phi^4$ field at finite temperature”, Internat. J. Theor. Phys., 38:7 (1999), 1969–1979 | DOI | Zbl
[30] A. Linde, “Inflationary cosmology”, Inflationary Cosmology, Lecture Notes in Physics, 738, eds. M. Lemoine, J. Martin, P. Peter, Springer, Berlin, 2008, 1–54, arXiv: 0705.0164 | DOI | MR | Zbl
[31] A. Albrecht, P. Steinhardt, “Cosmology for grand unified theories with radiatively induced symmetry breaking”, Phys. Rev. Lett., 48:17 (1982), 1220–1223 | DOI
[32] V. F. Mukhanov, H. A. Feldman, R. H. Brandenberger, “Theory of cosmological perturbations”, Phys. Rep., 215:5–6 (1992), 203–333 | DOI | MR
[33] S. V. Chervon, M. Novello, R. Triay, “Exact cosmology and specification of an inflationary scenario”, Gravit. Cosmol., 11:4(44) (2005), 329–332 | Zbl
[34] S. V. Chervon, I. V. Fomin, “On calculation of the cosmological parameters in exact models of inflation”, Gravit. Cosmol., 14:2 (2008), 163–167 | DOI | MR | Zbl
[35] S. V. Chervon, I. V. Fomin, “Kvantovoe rozhdenie nachalnykh kosmologicheskikh vozmuschenii”, Izv. vuzov (Povolzhskii region). Fiz.-matem. nauki, 2008, no. 4, 97–107
[36] P. A. R. Ade, N. Aghanim, M. Arnaud et al. [Planck Collab.], “Planck 2015 results. XIII. Cosmological parameters”, Astron. Astrophys., 594 (2016), A13, 63 pp., arXiv: 1502.01589 | DOI
[37] J. D. Barrow, “Exact inflationary universes with potential minima”, Phys. Rev. D, 49:6 (1994), 3055–3058 | DOI | MR