Holographic dark energy models with interactions and entropy corrections for different cutoffs in the Brans–Dicke cosmology
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 334-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the Brans–Dicke cosmology framework, we study holographic dark energy models with interaction and with power-law and logarithmic entropy corrections for different cutoffs. We consider conditions on the Brans–Dicke parameter compared with the conditions for the acceleration and phantom phases to show which entropy-corrected models can have acceleration and a phantom phase in the early Universe and at the present. Moreover, we determine which of the considered models are classically stable and which are unstable in early times and at the present.
Keywords: Brans–Dicke parameter, entropy correction, holographic dark energy.
@article{TMF_2017_191_2_a14,
     author = {F. Darabi and F. Falegary},
     title = {Holographic dark energy models with interactions and entropy corrections for different cutoffs in {the~Brans{\textendash}Dicke} cosmology},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {334--353},
     year = {2017},
     volume = {191},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a14/}
}
TY  - JOUR
AU  - F. Darabi
AU  - F. Falegary
TI  - Holographic dark energy models with interactions and entropy corrections for different cutoffs in the Brans–Dicke cosmology
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 334
EP  - 353
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a14/
LA  - ru
ID  - TMF_2017_191_2_a14
ER  - 
%0 Journal Article
%A F. Darabi
%A F. Falegary
%T Holographic dark energy models with interactions and entropy corrections for different cutoffs in the Brans–Dicke cosmology
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 334-353
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a14/
%G ru
%F TMF_2017_191_2_a14
F. Darabi; F. Falegary. Holographic dark energy models with interactions and entropy corrections for different cutoffs in the Brans–Dicke cosmology. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 334-353. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a14/

[1] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. Chris Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, J. Tonry, “Observational evidence from Supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116:3 (1998), 1009–1038 ; S. Perlmutter, G. Aldering, G. Goldhaber et al. (The Supernova Cosmology Project), “Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift Supernovae”, Astrophys. J., 517:2 (1999), 565–586 ; P. de Bernardis, P. A. R. Ade, J. J. Bock et al., “A flat Universe from high-resolution maps of the cosmic microwave background radiation”, Nature, 404:6781 (2000), 955–959 ; R. A. Knop, G. Aldering, R. Amanullah et al. (The Supernova Cosmology Project), “New Constraints on $\Omega_M$, $\Omega_\Lambda$, and $w$ from an independent set of 11 high-redshift Supernovae observed with the Hubble space Telescope”, Astrophys. J., 598:1 (2003), 102–137 ; U. Seljak, A. Makarov, P. McDonald et al., “Cosmological parameter analysis including SDSS $Ly\alpha$ forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy”, Phys. Rev. D, 71:10 (2005), 103515, 20 pp. | DOI | DOI | DOI | DOI | DOI

[2] E. J. Copeland, M. Sami, S. Tsujikawa, “Dynamics of dark energy”, Internat. J. Modern Phys. D, 15:11 (2006), 1753–1935 | DOI | MR | Zbl

[3] S. Weinberg, “The cosmological constant problem”, Rev. Modern Phys., 61:1 (1989), 1–23 | DOI | MR | Zbl

[4] W. Zimdahl, D. Pavon, “Interacting holographic dark energy”, Class. Quantum Grav., 24:22 (2007), 5461–5478 ; Y. Bisabr, “Coincidence problem in $f(R)$ gravity models”, Phys. Rev. D, 82:12 (2010), 124041, 6 pp. | DOI | MR | Zbl | DOI

[5] T. Padmanabhan, “Cosmological constant – the weight of the vacuum”, Phys. Rep., 380:5–6 (2003), 235–320 ; Y.-F. Cai, E. N. Saridakis, M. R. Setare, J.-Q. Xia, “Quintom cosmology: theoretical implications and observations”, Phys. Rep., 493:1 (2010), 1–60 | DOI | MR | Zbl | DOI | MR

[6] L. Susskind, “The world as a hologram”, J. Math. Phys., 36:11 (1995), 6377–6396 ; S. Nojiri, S. D. Odintsov, “Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy”, Gen. Relativ. Gravit., 38:8 (2006), 1285–1304 ; K. Bamba, S. Capozziello, S. D. Odintsov, “Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests”, Astrophys. Space Sci., 342:1 (2012), 155–228 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl

[7] R. M. Wald, “Black hole entropy is the Noether charge”, Phys. Rev. D, 48:8 (1993), R3427–R3431, arXiv: gr-qc/9307038 | DOI | MR | Zbl

[8] N. Radicella, D. Pavón, “The generalized second law in universes with quantum corrected entropy relations”, Phys. Lett. B, 691:3 (2010), 121–126 | DOI | MR

[9] M. Jamil, A. Sheykhi, M. U. Farooq, “Thermodynamics of interacting entropy-corrected holographic dark energy in a non-flat FRW universe”, Internat. J. Modern Phys. D, 19:11 (2010), 1831–1842 | DOI | Zbl

[10] A. Ashtekar, J. Baez, A. Corichi, K. Krasnov, “Quantum geometry and black hole entropy”, Phys. Rev. Lett., 80:5 (1998), 904–907, arXiv: gr-qc/9710007 | DOI | MR | Zbl

[11] C. Rovelli, “Black hole entropy from loop quantum gravity”, Phys. Rev. Lett., 77:16 (1996), 3288–3291 | DOI | MR | Zbl

[12] A. Ghosh, P. Mitra, “Log correction to the black hole area law”, Phys. Rev. D, 71:2 (2005), 027502, 3 pp. | DOI | MR

[13] A. J. M. Medved, E. C. Vagenas, “When conceptual worlds collide: the generalized uncertainty principle and the Bekenstein–Hawking entropy”, Phys. Rev. D, 70:12 (2004), 124021, 5 pp. | DOI | MR

[14] K. A. Meissner, “Black-hole entropy in loop quantum gravity”, Class. Quantum Grav., 21:22 (2004), 5245–5251 | DOI | MR | Zbl

[15] R.Ṁ. Wald, General Relativity, University of Chicago Press, Chicago, IL, 1984 | MR | Zbl

[16] A. Sheykhi, M. Jamil, “Power-law entropy corrected holographic dark energy model”, Gen. Relativ. Gravit., 43:10 (2011), 2661–2672, arXiv: 1011.0134 | DOI | MR | Zbl

[17] R. Banerjee, B. R. Majhi, “Quantum tunneling and back reaction”, Phys. Lett. B, 662:1 (2008), 62–65 | DOI | MR | Zbl

[18] Y.-F. Cai, J. Liu, H. Li, “Entropic cosmology: a unified model of inflation and late-time acceleration”, Phys. Lett. B, 690:3 (2010), 213–219 | DOI

[19] H. Wei, “Entropy-corrected holographic dark energy”, Commun. Theor. Phys., 52:4 (2009), 743–749 | DOI | Zbl

[20] A. Sheykhi, “Interacting holographic dark energy in Brans–Dicke theory”, Phys. Lett. B, 681:3 (2009), 205–209 | DOI | MR

[21] P. Jordan, Schwerkraft und Weltall, Friedrich Vieweg und Sohn, Braunschweig, 1955

[22] C. Brans, R. H. Dicke, “Mach's principle and a relativistic theory of gravitation”, Phys. Rev., 124:3 (1961), 925–935 | DOI | MR | Zbl

[23] C. Wetterich, “Cosmology and the fate of dilatation symmetry”, Nucl. Phys. B, 302:4 (1988), 668–696 | DOI

[24] T. Chiba, T. Okabe, M. Yamaguchi, “Kinetically driven quintessence”, Phys. Rev. D, 62:2 (2000), 023511, 8 pp. ; C. Armendariz-Picon, V. Mukhanov, P. J. Steinhardt, “Essentials of $k$-essence”, Phys. Rev. D, 63:10 (2001), 103510 | DOI | DOI | MR

[25] R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state”, Phys. Lett. B, 545:1–2 (2002), 23–29 ; S. Nojiri, S. D. Odintsov, “Quantum de Sitter cosmology and phantom matter”, Phys. Lett. B, 562:3–4 (2002), 147–152 ; “de Sitter brane universe induced by phantom and quantum effects”, 565:1 (2003), 1–9 | DOI | DOI | DOI | Zbl

[26] A. Sen, “Rolling tachyon”, JHEP, 04 (2002), 048, 18 pp. | DOI | MR

[27] E. Elizade, S. Nojiri, S. D. Odintsov, “Late-time cosmology in a (phantom) scalar-tensor theory: dark energy and the cosmic speed-up”, Phys. Rev. D, 70:4 (2004), 043539, 20 pp. ; S. Nojiri, S. D. Odintsov, S. Tsujikawa, “Properties of singularities in the (phantom) dark energy universe”, Phys. Rev. D, 71:6 (2005), 063004, 16 pp. | DOI | DOI | MR

[28] J. P. B. Almeida, J. G. Pereira, “Holographic dark energy and the universe expansion acceleration”, Phys. Lett. B, 636:2 (2006), 75–79, arXiv: gr-qc/0602103 | DOI

[29] L. N. Granda, A. Oliveros, “Infrared cut-off proposal for the holographic density”, Phys. Lett. B, 669:5 (2008), 275–277 ; “New infrared cut-off for the holographic scalar fields models of dark energy”, 671:2 (2009), 199–202 | DOI | DOI | MR

[30] X. Zhang, “Reconstructing holographic quintessence”, Phys. Lett. B, 648:1 (2007), 1–7 ; J. Zhang, X. Zhang, H. Liu, “Agegraphic dark energy as a quintessence”, Eur. Phys. J. C, 54:2 (2008), 303–309 ; X. Zhang, “Holographic Ricci dark energy: current observational constraints, quintom feature, and the reconstruction of scalar-field dark energy”, Phys. Rev. D, 79:10 (2009), 103509, 12 pp. | DOI | MR | DOI | DOI

[31] K. Karami, M. S. Khaledian, F. Felegary, Z. Azarmi, “Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe”, Phys. Lett. B, 686:4–5 (2010), 216–220 | DOI

[32] M. R. Setare, “The holographic dark energy in non-flat Brans–Dicke cosmology”, Phys. Lett. B, 644:2–3 (2007), 99–103 ; “Interacting holographic dark energy model in non-flat universe”, 642:1–2 (2006), 1–4 ; “Holographic Chaplygin gas model”, 648:5–6 (2007), 329–332 ; “Holographic tachyon model of dark energy”, 653:2–4 (2007), 116–121 ; “Interacting holographic generalized Chaplygin gas model”, 654:1–2 (2007), 1–6 ; “Interacting holographic phantom”, Eur. Phys. J. C, 50:4 (2007), 991–998 ; M. R. Setare, J. Zhang, X. Zhang, “Statefinder diagnosis in a non-flat universe and the holographic model of dark energy”, JCAP, 03 (2007), 007, 16 pp. ; M. R. Setare, E. C. Vagenas, “The cosmological dynamics of interacting holographic dark energy model”, Internat. J. Modern Phys. D, 18:1 (2009), 147–157 | DOI | MR | Zbl | DOI | Zbl | DOI | Zbl | DOI | MR | Zbl | DOI | DOI | DOI | DOI | MR | Zbl

[33] P. J. E. Peebles, B. Ratra, “The cosmological constant and dark energy”, Rev. Modern Phys., 75:2 (2003), 559–606 | DOI | MR | Zbl

[34] M. Arik, M. Çalik, “Can Brans–Dicke scalar field account for dark energy and dark matter?”, Modern Phys. Lett. A, 21:15 (2006), 1241–1248 | DOI | Zbl

[35] M. Jamil, K. Karami, A. Sheykhi, E. Kazemi, Z. Azarmi, “Holographic dark energy in Brans–Dicke cosmology with Granda–Oliveros cut-off”, Internat. J. Theor. Phys., 51:2 (2012), 604–611 ; N. Banerjee, D. Pavón, “Holographic dark energy in Brans–Dicke theory”, Phys. Lett. B, 647:5–6 (2007), 477–481 | DOI | MR | Zbl | DOI | MR | Zbl

[36] H. Kim, “Brans–Dicke theory as a unified model for dark matter–dark energy”, Mon. Not. Roy. Astron. Soc., 364:3 (2005), 813–822 | DOI

[37] Y.-Z. Ma, Y. Gong, X. Chen, “Features of holographic dark energy under combined cosmological constraints”, Eur. Phys. J. C, 60:2 (2009), 303–315 ; C. Feng, B. Wang, Y. Gong, R.-K. Su, “Testing the viability of the interacting holographic dark energy model by using combined observational constraints”, JCAP, 09 (2007), 005, 15 pp. ; Q. Wu, Y. Gong, A. Wang, J. S. Alcaniz, “Current constraints on interacting holographic dark energy”, Phys. Lett. B, 659:1–2 (2008), 34–39 | DOI | DOI | DOI

[38] J. Lu, W. Wang, L. Xu, Y. Wu, “Does accelerating universe indicate Brans–Dicke theory?”, Eur. Phys. J. Plus, 126:10 (2011), 92, 13 pp. | DOI

[39] A. Sheykhi, K. Karami, M. Jamil, E. Kazemi, M. Haddad, “Holographic dark energy in Brans–Dicke theory with logarithmic correction”, Gen. Relativ. Gravit., 44:3 (2012), 623–638 | DOI | MR | Zbl

[40] Q.-G. Huang, M. Li, “The holographic dark energy in a non-flat universe”, JCAP, 08 (2004), 013, 10 pp. | DOI | MR

[41] A. Pasqua, I. Khomenko, “Interacting Ricci logarithmic entropy-corrected holographic dark energy in Brans–Dicke cosmology”, Internat. J. Theoret. Phys., 52:11 (2013), 3981–3993, arXiv: 1212.2157 | DOI | MR | Zbl