Mots-clés : rogue wave, Darboux transformation.
@article{TMF_2017_191_2_a11,
author = {Da-Wei Zuo and Yi-Tian Gao and Yu-Jie Feng and Long Xue and Yu-Hao Sun},
title = {Rogue waves in baroclinic flows},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {291--303},
year = {2017},
volume = {191},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a11/}
}
TY - JOUR AU - Da-Wei Zuo AU - Yi-Tian Gao AU - Yu-Jie Feng AU - Long Xue AU - Yu-Hao Sun TI - Rogue waves in baroclinic flows JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 291 EP - 303 VL - 191 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a11/ LA - ru ID - TMF_2017_191_2_a11 ER -
Da-Wei Zuo; Yi-Tian Gao; Yu-Jie Feng; Long Xue; Yu-Hao Sun. Rogue waves in baroclinic flows. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 291-303. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a11/
[1] I. M. Moroz, J. Brindley, “Evolution of baroclinic wave packets in a flow with continuous shear and stratification”, Proc. Roy. Soc. London Ser. A, 377:1771 (1981), 379–404 | DOI | MR | Zbl
[2] Y. Li, M. Mu, “Baroclinic instability in the generalized Phillips' model part I: two-layer model”, Adv. Atmos. Sci., 13:1 (1996), 33–42 | DOI
[3] Y. Li, “Baroclinic instability in the generalized Phillips' model part II: three-layer model”, Adv. Atmos. Sci., 17:3 (2000), 413–432 | DOI
[4] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1987 | Zbl
[5] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR | Zbl
[6] R. Guo, H.-Q. Hao, L.-L. Zhang, “Dynamic behaviors of the breather solutions for the AB system in fluid mechanics”, Nonlinear Dynam., 74:3 (2013), 701–709 | DOI | MR
[7] A. M. Kamchatnov, M. V. Pavlov, “Periodic solutions and Whitham equations for the AB system”, J. Phys. A: Math. Gen., 28:11 (1995), 3279–3288 | DOI | MR | Zbl
[8] J. D. Gibbon, M. J. McGuinness, “Amplitude equations at the critical points of unstable dispersive physical systems”, Proc. Roy. Soc. London Ser. A, 377:1769 (1981), 185–219 | DOI | MR | Zbl
[9] S. Lee, I. M. Held, “Baroclinic wave packets in models and observations”, J. Atmos. Sci., 50:10 (1993), 1413–1428 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[10] C. Kharif, E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon”, Eur. J. Mech. B Fluids, 22:6 (2003), 603–634 | DOI | MR | Zbl
[11] B. Guo, L. Ling, Q. P. Liu, “High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations”, Stud. Appl. Math., 130:4 (2013), 317–344 | DOI | MR | Zbl
[12] V. B. Matveev, “Pozitony: medlenno ubyvayuschie analogi solitonov”, TMF, 131:1 (2002), 44–61 | DOI | DOI | MR | Zbl
[13] Ph. Dubard, P. Gaillard, C. Klein, V. B. Matveev, “On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation”, Eur. Phys. J. Spec. Top., 185:1 (2010), 247–258 | DOI | MR
[14] H.-X. Jia, Y.-J. Liu, Y.-N. Wang, “Rogue-wave interaction of a nonlinear Schrödinger model for the alpha helical protein”, Z. Naturforsch. A, 71:1 (2016), 27–32 | DOI
[15] H. X. Jia, J. Y. Ma, Y. J. Liu, X. F. Liu, “Rogue-wave solutions of a higher-order nonlinear Schrödinger equation for inhomogeneous Heisenberg ferromagnetic system”, Indian J. Phys., 89:3 (2015), 281–287 | DOI
[16] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, “Tochnye resheniya pervogo poryadka nelineinogo uravneniya Shredingera”, TMF, 72:2 (1987), 183–196 | DOI | MR | Zbl
[17] A. Chabchoub, N. Hoffmann, N. Akhmediev, “Rogue wave observation in a water wave tank”, Phys. Rev. Lett., 106:20 (2011), 204502, 4 pp. | DOI
[18] B. L. Guo, L. M. Ling, Q. P. Liu, “Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85:2 (2012), 026607, 9 pp. | DOI | MR
[19] D. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves”, Nature, 450:7172 (2007), 1054–1057 | DOI
[20] N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schördinger equation”, Phys. Rev. E, 80:2 (2009), 026601, 9 pp. | DOI | MR
[21] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR
[22] A. Ankiewicz, N. Akhmediev, J. M. Soto-Crespo, “Discrete rogue waves of the Ablowitz–Ladik and Hirota equations”, Phys. Rev. E, 82:2 (2010), 026602, 7 pp. | DOI | MR
[23] A. Ankiewicz, D. J. Kedziora, N. Akhmdiev, “Rogue wave triplets”, Phys. Lett. A, 375:28–29 (2011), 2782–2785 | DOI | MR | Zbl
[24] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation”, Nat. Hazard. Earth Syst. Sci., 11 (2011), 667–672 | DOI | MR
[25] Y. Ohta, J. Yang, “General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation”, Proc. Roy. Soc. London Ser. A, 468:2142 (2012), 1716–1740 | DOI | MR
[26] B. Tian, Y.-T. Gao, “Spherical Kadomtsev–Petviashviliequation and nebulons for dust ion-acoustic waves with symbolic computation”, Phys. Lett. A, 340:1–4 (2005), 243–250 | DOI | Zbl
[27] T. Xu, B. Tian, L.-L. Li, X. Lü, C. Zhang, “Dynamics of Alfvén solitons in inhomogeneous plasmas”, Phys. Plasmas, 15:10 (2008), 102307, 6 pp. | DOI
[28] Y. Zhang, Y. Song, L. Cheng, J.-Y. Ge, W.-W. Wei, “Exact solutions and Painlevé analysis of a new $(2+1)$-dimensional generalized KdV equation”, Nonlinear Dynam., 68:4 (2012), 445–458 | DOI | MR | Zbl
[29] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | DOI | MR | Zbl
[30] V. B. Matveev, “Darboux transformations, covariance theorems and integrable systems”, L. D. Faddeev's Seminar on Mathematical Physics, American Mathematical Society Translations: Ser. 2, 201, ed. M. A. Semenov-Tyan-Shanskij, AMS, Providence, RI, 2000, 179–209 | DOI | MR | Zbl