Rogue waves in baroclinic flows
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 291-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate an $AB$ system, which can be used to describe marginally unstable baroclinic wave packets in a geophysical fluid. Using the generalized Darboux transformation, we obtain higher-order rogue wave solutions and analyze rogue wave propagation and interaction. We obtain bright rogue waves with one and two peaks. For the wave packet amplitude and the mean-flow correction resulting from the self-rectification of the nonlinear wave, the positions and values of the wave crests and troughs are expressed in terms of a parameter describing the state of the basic flow, in terms of a parameter responsible for the interaction of the wave packet and the mean flow, and in terms of the group velocity. We show that the interaction of the wave packet and mean flow and also the group velocity affect the propagation and interaction of the amplitude of the wave packet and the self-rectification of the nonlinear wave.
Keywords: baroclinic flow
Mots-clés : rogue wave, Darboux transformation.
@article{TMF_2017_191_2_a11,
     author = {Da-Wei Zuo and Yi-Tian Gao and Yu-Jie Feng and Long Xue and Yu-Hao Sun},
     title = {Rogue waves in baroclinic flows},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--303},
     year = {2017},
     volume = {191},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a11/}
}
TY  - JOUR
AU  - Da-Wei Zuo
AU  - Yi-Tian Gao
AU  - Yu-Jie Feng
AU  - Long Xue
AU  - Yu-Hao Sun
TI  - Rogue waves in baroclinic flows
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 291
EP  - 303
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a11/
LA  - ru
ID  - TMF_2017_191_2_a11
ER  - 
%0 Journal Article
%A Da-Wei Zuo
%A Yi-Tian Gao
%A Yu-Jie Feng
%A Long Xue
%A Yu-Hao Sun
%T Rogue waves in baroclinic flows
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 291-303
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a11/
%G ru
%F TMF_2017_191_2_a11
Da-Wei Zuo; Yi-Tian Gao; Yu-Jie Feng; Long Xue; Yu-Hao Sun. Rogue waves in baroclinic flows. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 291-303. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a11/

[1] I. M. Moroz, J. Brindley, “Evolution of baroclinic wave packets in a flow with continuous shear and stratification”, Proc. Roy. Soc. London Ser. A, 377:1771 (1981), 379–404 | DOI | MR | Zbl

[2] Y. Li, M. Mu, “Baroclinic instability in the generalized Phillips' model part I: two-layer model”, Adv. Atmos. Sci., 13:1 (1996), 33–42 | DOI

[3] Y. Li, “Baroclinic instability in the generalized Phillips' model part II: three-layer model”, Adv. Atmos. Sci., 17:3 (2000), 413–432 | DOI

[4] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1987 | Zbl

[5] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR | Zbl

[6] R. Guo, H.-Q. Hao, L.-L. Zhang, “Dynamic behaviors of the breather solutions for the AB system in fluid mechanics”, Nonlinear Dynam., 74:3 (2013), 701–709 | DOI | MR

[7] A. M. Kamchatnov, M. V. Pavlov, “Periodic solutions and Whitham equations for the AB system”, J. Phys. A: Math. Gen., 28:11 (1995), 3279–3288 | DOI | MR | Zbl

[8] J. D. Gibbon, M. J. McGuinness, “Amplitude equations at the critical points of unstable dispersive physical systems”, Proc. Roy. Soc. London Ser. A, 377:1769 (1981), 185–219 | DOI | MR | Zbl

[9] S. Lee, I. M. Held, “Baroclinic wave packets in models and observations”, J. Atmos. Sci., 50:10 (1993), 1413–1428 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] C. Kharif, E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon”, Eur. J. Mech. B Fluids, 22:6 (2003), 603–634 | DOI | MR | Zbl

[11] B. Guo, L. Ling, Q. P. Liu, “High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations”, Stud. Appl. Math., 130:4 (2013), 317–344 | DOI | MR | Zbl

[12] V. B. Matveev, “Pozitony: medlenno ubyvayuschie analogi solitonov”, TMF, 131:1 (2002), 44–61 | DOI | DOI | MR | Zbl

[13] Ph. Dubard, P. Gaillard, C. Klein, V. B. Matveev, “On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation”, Eur. Phys. J. Spec. Top., 185:1 (2010), 247–258 | DOI | MR

[14] H.-X. Jia, Y.-J. Liu, Y.-N. Wang, “Rogue-wave interaction of a nonlinear Schrödinger model for the alpha helical protein”, Z. Naturforsch. A, 71:1 (2016), 27–32 | DOI

[15] H. X. Jia, J. Y. Ma, Y. J. Liu, X. F. Liu, “Rogue-wave solutions of a higher-order nonlinear Schrödinger equation for inhomogeneous Heisenberg ferromagnetic system”, Indian J. Phys., 89:3 (2015), 281–287 | DOI

[16] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, “Tochnye resheniya pervogo poryadka nelineinogo uravneniya Shredingera”, TMF, 72:2 (1987), 183–196 | DOI | MR | Zbl

[17] A. Chabchoub, N. Hoffmann, N. Akhmediev, “Rogue wave observation in a water wave tank”, Phys. Rev. Lett., 106:20 (2011), 204502, 4 pp. | DOI

[18] B. L. Guo, L. M. Ling, Q. P. Liu, “Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85:2 (2012), 026607, 9 pp. | DOI | MR

[19] D. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves”, Nature, 450:7172 (2007), 1054–1057 | DOI

[20] N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schördinger equation”, Phys. Rev. E, 80:2 (2009), 026601, 9 pp. | DOI | MR

[21] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR

[22] A. Ankiewicz, N. Akhmediev, J. M. Soto-Crespo, “Discrete rogue waves of the Ablowitz–Ladik and Hirota equations”, Phys. Rev. E, 82:2 (2010), 026602, 7 pp. | DOI | MR

[23] A. Ankiewicz, D. J. Kedziora, N. Akhmdiev, “Rogue wave triplets”, Phys. Lett. A, 375:28–29 (2011), 2782–2785 | DOI | MR | Zbl

[24] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation”, Nat. Hazard. Earth Syst. Sci., 11 (2011), 667–672 | DOI | MR

[25] Y. Ohta, J. Yang, “General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation”, Proc. Roy. Soc. London Ser. A, 468:2142 (2012), 1716–1740 | DOI | MR

[26] B. Tian, Y.-T. Gao, “Spherical Kadomtsev–Petviashviliequation and nebulons for dust ion-acoustic waves with symbolic computation”, Phys. Lett. A, 340:1–4 (2005), 243–250 | DOI | Zbl

[27] T. Xu, B. Tian, L.-L. Li, X. Lü, C. Zhang, “Dynamics of Alfvén solitons in inhomogeneous plasmas”, Phys. Plasmas, 15:10 (2008), 102307, 6 pp. | DOI

[28] Y. Zhang, Y. Song, L. Cheng, J.-Y. Ge, W.-W. Wei, “Exact solutions and Painlevé analysis of a new $(2+1)$-dimensional generalized KdV equation”, Nonlinear Dynam., 68:4 (2012), 445–458 | DOI | MR | Zbl

[29] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | DOI | MR | Zbl

[30] V. B. Matveev, “Darboux transformations, covariance theorems and integrable systems”, L. D. Faddeev's Seminar on Mathematical Physics, American Mathematical Society Translations: Ser. 2, 201, ed. M. A. Semenov-Tyan-Shanskij, AMS, Providence, RI, 2000, 179–209 | DOI | MR | Zbl