Keywords: Wadati–Konno–Ichikawa system, modulation instability.
@article{TMF_2017_191_2_a10,
author = {Yongshuai Zhang and Deqin Qiu and Yi Cheng and Jingsong He},
title = {The {Darboux} transformation for {WKI} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {275--290},
year = {2017},
volume = {191},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a10/}
}
TY - JOUR AU - Yongshuai Zhang AU - Deqin Qiu AU - Yi Cheng AU - Jingsong He TI - The Darboux transformation for WKI system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 275 EP - 290 VL - 191 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a10/ LA - ru ID - TMF_2017_191_2_a10 ER -
Yongshuai Zhang; Deqin Qiu; Yi Cheng; Jingsong He. The Darboux transformation for WKI system. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 275-290. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a10/
[1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI | MR | Zbl
[2] V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys., 9:2 (1968), 190–194 | DOI
[3] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR
[4] M. J. Ablowitz, D. J. Kaup, A. Newell, H. Segur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR
[5] M. Wadati, “The modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 34:5 (1973), 1289–1296 | DOI | MR | Zbl
[6] A. Fokas, M. Ablowitz, “Inverse scattering transform for the Benjamin–Ono equation – a pivot to multidimensional problems”, Stud. Appl. Math., 68:1 (1983), 1–10 | DOI | MR | Zbl
[7] D. Kaup, Y. Matsuno, “The inverse scattering transform for the Benjamin–Ono equation”, Stud. Appl. Math., 101:1 (1998), 73–98 | DOI | MR | Zbl
[8] Y. Kodama, M. J. Ablowitz, J. Satsuma, “Direct and inverse scattering problems of the nonlinear intermediate long wave equation”, J. Math. Phys., 23:4 (1982), 564–576 | DOI | MR | Zbl
[9] A. S. Fokas, M. J. Ablowitz, “On the inverse scattering on the time-dependent Schrödinger equation and the associated Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 69:3 (1983), 211–228 | DOI | MR | Zbl
[10] S. V. Manakov, “The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev–Petviashvili equation”, Phys. D, 3:1–2 (1981), 420–427 | DOI | Zbl
[11] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI | MR | Zbl
[12] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl
[13] M. Wadati, K. Konno, Y. H. Ichikawa, “New integrable nonlinear evolution equations”, J. Phys. Soc. Japan, 47:5 (1979), 1698–1700 | DOI | MR | Zbl
[14] K. Konno, A. Jeffrey, “The loop soliton”, Advances in nonlinear waves, v. 1, ed. L. Debnath, Pitman, London, 1984, 162–183 | MR
[15] M. Kruskal, “Nonlinear wave equations”, Dynamical Systems, Theory and Applications, Lecture Notes in Physics, 38, 1975, 310–354 | DOI | MR | Zbl
[16] T. Shimizu, M. Wadati, “A new integrable nonlinear evolution equation”, Progr. Theoret. Phys., 63:3 (1980), 808–820 | DOI | MR | Zbl
[17] M. Wadati, K. Sogo, “Gauge transformations in soliton theory”, J. Phys. Soc. Japan, 52:2 (1983), 394–398 | DOI | MR
[18] Y. Ishimori, “A relationship between the Ablowitz–Kaup–Newell–Segur and Wadati–Konno–Ichikawa schemes of the inverse scattering method”, J. Phys. Soc. Japan, 51:9 (1982), 3036–3041 | DOI | MR
[19] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR | Zbl
[20] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation”, Nat. Hazards Earth Sys. Sci., 11:3 (2011), 667–672 | DOI | MR
[21] P. Dubard, V. Matveev, “Multi-rogue waves solutions: from the NLS to the KP-I equation”, Nonlinearity, 26:12 (2013), R93–R125 | DOI | MR | Zbl
[22] B. Guo, L. Ling, Q. P. Liu, “High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations”, Stud. Appl. Math., 130:4 (2013), 317–344 | DOI | MR | Zbl
[23] L. Guo, Y. Zhang, S. Xu, Z. Wu, J. He, “The higher order rogue wave solutions of the Gerdjikov–Ivanov equation”, Phys. Scripta, 89:3 (2014), 035501 | DOI | MR
[24] S. Xu, J. He, L. Wang, “The Darboux transformation of the derivative nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 44:30 (2011), 305203, 22 pp. | DOI | MR | Zbl
[25] Y. Zhang, L. Guo, J. He, Z. Zhou, “Darboux transformation of the second–type derivative nonlinear Schrödinger equation”, Lett. Math. Phys., 105:6 (2015), 853–891 | DOI | MR | Zbl
[26] Y. Zhang, L. Guo, S. Xu, Z. Wu, J. He, “The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 19:6 (2014), 1706–1722 | DOI | MR
[27] Y. Ohta, J. Yang, “Rogue waves in the Davey–Stewartson I equation”, Phys. Rev. E, 86:3 (2012), 036604, 8 pp. | DOI
[28] Y. Ohta, J. Yang, “Dynamics of rogue waves in the Davey–Stewartson II equation”, J. Phys. A: Math. Theor., 46:10 (2013), 105202, 19 pp. | DOI | MR | Zbl
[29] N. Akhmediev, J. M. Soto-Crespo, N. Devine, N. P. Hoffmann, “Rogue wave spectra of the Sasa–Satsuma equation”, Phys. D, 294 (2015), 37–42 | DOI | MR
[30] S. Chen, “Twisted rogue-wave pairs in the Sasa–Satsuma equation”, Phys. Rev. E, 88:2 (2013), 023202, 5 pp. | DOI
[31] F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, S. Wabnitz, “Vector rogue waves and baseband modulation instability in the defocusing regime”, Phys. Rev. Lett., 113:3 (2014), 034101, 5 pp. | DOI
[32] F. Baronio, A. Degasperis, M. Conforti, S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves”, Phys. Rev. Lett., 109:4 (2012), 044102, 4 pp. | DOI
[33] B.-L. Guo, L.-M. Ling, “Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations”, Chin. Phys. Lett., 28:11 (2011), 110202, 4 pp. | DOI
[34] G. Mu, Z. Qin, R. Grimshaw, “Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation”, SIAM J. Appl. Math., 75:1 (2015), 1–20 | DOI | MR | Zbl
[35] A. Ankiewicz, N. Akhmediev, J. M. Soto-Crespo, “Discrete rogue waves of the Ablowitz–Ladik and Hirota equations”, Phys. Rev. E, 82:2 (2010), 026602, 7 pp. | DOI | MR
[36] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR
[37] A. Ankiewicz, Y. Wang, S. Wabnitz, N. Akhmediev, “Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions”, Phys. Rev. E, 89:1 (2014), 012907, 9 pp. | DOI | MR
[38] D. Qiu, J. He, Y. Zhang, K. Porsezian, “The Darboux transformation of the Kundu–Eckhaus equation”, Proc. Roy. Soc. A, 471:2180 (2015), 20150236 | DOI | MR
[39] D. Qiu, Y. Zhang, J. He, “The rogue wave solutions of a new $(2+1)$-dimensional equation”, Commun. Nonlinear Sci. Numer. Simul., 30:1–3 (2016), 307–315 | DOI | MR
[40] A. Chabchoub, N. Akhmediev, “Observation of rogue wave triplets in water waves”, Phys. Lett. A, 377:38 (2013), 2590–2593 | DOI | Zbl
[41] A. Chabchoub, N. P. Hoffmann, N. Akhmediev, “Rogue wave observation in a water wave tank”, Phys. Rev. Lett., 106:20 (2011), 204502, 4 pp. | DOI | MR
[42] A. Chabchoub, N. P. Hoffmann, N. Akhmediev, “Observation of rogue wave holes in a water wave tank”, J. Geophys. Res. Oceans, 117:C11 (2012), C00J02 | DOI
[43] A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, “Super rogue waves: observation of a higher-order breather in water waves”, Phys. Rev. X, 2:1 (2012), 011015, 6 pp. | DOI | MR
[44] A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev, A. Sergeeva, E. Pelinovsky, N. Akhmediev, “Observation of a hierarchy of up to fifth-order rogue waves in a water tank”, Phys. Rev. E, 86:5 (2012), 056601, 6 pp. | DOI
[45] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics”, Nature Phys., 6:10 (2010), 790–795 | DOI
[46] D. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves”, Nature, 450:7172 (2007), 1054–1057 | DOI
[47] H. Bailung, S. Sharma, Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions”, Phys. Rev. Lett., 107:25 (2011), 255005, 4 pp. | DOI
[48] M. Shats, H. Punzmann, H. Xia, “Capillary rogue waves”, Phys. Rev. Lett., 104:10 (2010), 104503, 4 pp. | DOI
[49] C. Kharif, J. Touboul, “Under which conditions the Benjamin–Feir instability may spawn an extreme wave event: a fully nonlinear approach”, Eur. Phys. J. Spec. Top., 185 (2010), 159–168 | DOI
[50] A. Slunyaev, “Freak wave events and the wave phase coherence”, Eur. Phys. J. Spec. Top., 185:1 (2010), 67–80 | DOI | MR
[51] V. Zakharov, A. Gelash, “Nonlinear stage of modulation instability”, Phys. Rev. Lett., 111:5 (2013), 054101, 5 pp. | DOI
[52] P. A. Clarkson, A. S. Fokas, M. J. Ablowitz, “Hodograph transformations of linearizable partial differential equations”, SIAM J. Appl. Math., 49:4 (1989), 1188–1209 | DOI | MR | Zbl
[53] S. Kawamoto, “An exact transformation from the Harry Dym equation to the modified KdV equation”, J. Phys. Soc. Japan, 54:5 (1985), 2055–2056 | DOI
[54] D. Levi, O. Ragnisco, A. Sym, “The Bäcklund transformations for nonlinear evolution equations which exhibit exotic solitons”, Phys. Lett. A, 100:1 (1984), 7–10 | DOI | MR
[55] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2005 | DOI | MR | Zbl
[56] J. He, L. Zhang, Y. Cheng, Y. Li, “Determinant representation of Darboux transformation for the AKNS system”, Sci. China Ser. A, 49:12 (2006), 1867–1878 | DOI | MR | Zbl
[57] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1991 | DOI | MR | Zbl
[58] M. Wadati, Y. H. Ichikawa, T. Shimizu, “Cusp soliton of a new integrable nonlinear evolution equation”, Prog. Theor. Phys., 64:6 (1980), 1959–1967 | DOI | MR | Zbl
[59] J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, A. S. Fokas, “Generating mechanism for higher-order rogue waves”, Phys. Rev. E, 87:5 (2013), 052914, 10 pp. | DOI
[60] T. B. Benjamin, J. E. Feir, “The disintegration of wave trains on deep water. Part 1. Theory”, J. Fluid Mech., 27:3 (1967), 417–430 | DOI | MR | Zbl
[61] G. Whitham, “Non-linear dispersion of water waves”, J. Fluid Mech., 27:2 (1967), 399–412 | DOI | MR | Zbl