Effective couplings and the prospect of solving fundamental problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 189-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the possibility of the spontaneous appearance of an effective coupling in the quantum gravity framework. We discuss a variant of the behavior of the running coupling constant of gravity caused by an effective intergraviton coupling, which entails a qualitative description of the hypotheses on the existence of dark matter and dark energy.
Keywords: anomalous gravitational coupling, dark matter.
@article{TMF_2017_191_2_a1,
     author = {B. A. Arbuzov and I. V. Zaitsev},
     title = {Effective couplings and the~prospect of solving fundamental problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {189--195},
     year = {2017},
     volume = {191},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a1/}
}
TY  - JOUR
AU  - B. A. Arbuzov
AU  - I. V. Zaitsev
TI  - Effective couplings and the prospect of solving fundamental problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 189
EP  - 195
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a1/
LA  - ru
ID  - TMF_2017_191_2_a1
ER  - 
%0 Journal Article
%A B. A. Arbuzov
%A I. V. Zaitsev
%T Effective couplings and the prospect of solving fundamental problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 189-195
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a1/
%G ru
%F TMF_2017_191_2_a1
B. A. Arbuzov; I. V. Zaitsev. Effective couplings and the prospect of solving fundamental problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 2, pp. 189-195. http://geodesic.mathdoc.fr/item/TMF_2017_191_2_a1/

[1] T. P. Sotiriou, V. Faraoni, “$f(R)$ theories of gravity”, Rev. Modern Phys., 82:1 (2010), 451–497 | DOI | MR | Zbl

[2] N. N. Bogolyubov, “O printsipe kompensatsii i metode samosoglasovannogo polya”, UFN, 67:4 (1959), 549–580 | DOI | DOI

[3] N. N. Bogoliubov, “On some problems of the theory of superconductivity”, Physica, 26, suppl. 1 (1960), S1–S16 | DOI | MR

[4] B. A. Arbuzov, “Spontannoe vozniknovenie effektivnogo vzaimodeistviya v renormiruemoi modeli”, TMF, 140:3 (2004), 367–387 | DOI | DOI | Zbl

[5] B. A. Arbuzov, M. K. Volkov, I. V. Zaitsev, “NJL interaction derived from QCD”, Internat. J. Modern Phys. A, 21:28–29 (2006), 5721–5742 | DOI | Zbl

[6] B. A. Arbuzov, “Bogoliubov compensation principle in the electro-weak interaction: value of the gauge constant, muon ${g-2}$ anomaly, predictions for Tevatron and LHC”, Eur. Phys. J. C, 61:2 (2009), 51–59 | DOI

[7] B. A. Arbuzov, I. V. Zaitsev, “Nonperturbative solutions in the electroweak theory with $\bar t t$ condensate and the $t$-quark mass”, Internat. J. Modern Phys. A, 26:29 (2011), 4945–4958 | DOI | Zbl

[8] B. A. Arbuzov, “Neperturbativnye resheniya v elektroslaboi teorii”, TMF, 171:1 (2012), 33–43 | DOI | DOI | Zbl

[9] B. A. Arbuzov, I. V. Zaitsev, “LHC would-be $\gamma\gamma$ excess as a nonperturbative effect of the electroweak interaction”, Phys. Rev. D, 85:9 (2012), 093001, 6 pp. | DOI

[10] B. A. Arbuzov, I. V. Zaitsev, “On a possibility to eliminate the Landau pole in QCD”, Internat. J. Modern Phys. A, 28:26 (2013), 1350127, 19 pp. | DOI | MR | Zbl

[11] B. A. Arbuzov, I. V. Zaitsev, “ATLAS diboson excesses as an evidence for a heavy $WW$ resonance with the weak isospin 2”, Internat. J. Modern Phys. A, 30:36 (2015), 1550221, 8 pp. | DOI

[12] B. A. Arbuzov, Non-perturbative Effective Interactions in the Standard Model, De Gruyter Studies in Mathematical Physics, 23, De Gruyter, Berlin, 2014 | MR | Zbl

[13] K. Hagiwara, R. D. Peccei, D. Zeppenfeld, K. Hikasa, “Probing the weak boson sector in $e^+e^-\to W^+W^-$”, Nucl. Phys. B, 282 (1987), 253–307 | DOI

[14] K. A. Olive, K. Agashe, C. Amsler et al. [Particle Data Group Collab.], “Review of particle physics”, Chin. Phys. C, 38:9 (2014, 2015 update), 090001 | DOI

[15] B. S. DeWitt, “Quantum theory of gravity. II. The manifestly covariant theory”, Phys. Rev., 162:5 (1967), 1195–1239 | DOI | Zbl

[16] V. N. Popov, L. D. Faddeev, “Kovariantnoe kvantovanie gravitatsionnogo polya”, UFN, 111 (1973), 427–450 | DOI

[17] A. A. Logunov, Relyativistskaya teoriya gravitatsii, Nauka, M., 2012

[18] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 3, Dopolnitelnye glavy, Nauka, M., 1986 | MR | Zbl

[19] R. H. Sanders, “The published extended rotation curves of spiral galaxies: confrontation with modified dynamics”, Astrophys. J., 473 (1996), 117–142 | DOI