Mots-clés : Mathieu equation
@article{TMF_2017_191_1_a8,
author = {S. A. Alkharashi and Y. Gamiel},
title = {Stability characteristics of periodic streaming fluids in porous},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {126--150},
year = {2017},
volume = {191},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a8/}
}
S. A. Alkharashi; Y. Gamiel. Stability characteristics of periodic streaming fluids in porous. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 126-150. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a8/
[1] A. F. Elhefnawy, “Intervals of an unsteady electrohydrodynamic Kelvin–Helmoltz stability”, Phys. A, 214:2 (1995), 229–241 | DOI | MR
[2] T. Funada, D. D. Joseph, “Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel”, J. Fluid Mech., 445 (2001), 263–283 | DOI | MR | Zbl
[3] P. K. Bhatia, “Rayleigh–Taylor instability of two viscous superposed conducting fluids”, Nuovo Cimento B, 19:2 (1974), 161–168 | DOI
[4] K. Zakaria, M. A. Sirwah, S. Alkharashi, “Instability through porous media of three layers superposed conducting fluids”, Eur. J. Mech. B Fluids, 28:2 (2009), 259–270 | DOI | MR | Zbl
[5] P. G. Drazin, W. H. Reid, Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl
[6] D. D. Joseph, Stability of Fluid Motions II, Springer Tracts in Natural Philosophy, 28, Springer, Berlin, 1976 | DOI | MR | Zbl
[7] G. M. Sisoev, O. K. Matar, D. Sileri, C. J. Lawrence, “Wave regimes in two-layer microchannel flow”, Chem. Eng. Sci., 64:13 (2009), 3094–3102 | DOI
[8] I. M. R. Sadiq, R. Usha, S. W. Joo, “Instabilities in a liquid film flow over an inclined heated porous substrate”, Chem. Eng. Sci., 65:15 (2010), 4443–4459 | DOI
[9] D. Prieling, H. Steiner, “Analysis of the wall mass transfer on spinning disks using an integral boundary layer method”, Chem. Eng. Sci., 101 (2013), 109–119 | DOI
[10] F. Li, O. Ozen, N. Aubry, D. T. Papageorgiou, P. G. Petropoulos, “Linear stability of a two-fluid interface for electrohydrodynamic mixing in a channel”, J. Fluid Mech., 583 (2007), 347–377 | DOI | MR | Zbl
[11] D. Tseluiko, M. G. Blyth, D. T. Papageorgiou, J.-M. Vanden-Broeck, “Electrified viscous thin film flow over topography”, J. Fluid Mech., 597 (2008), 449–475 | DOI | MR | Zbl
[12] L. Espín, A. Corbett, S. Kumar, “Electrohydrodynamic instabilities in thin viscoelastic films – AC and DC fields”, J. Non-Newtonian Fluid Mech., 196 (2013), 102–111 | DOI
[13] S. A. Roberts, S. Kumar, “AC electrohydrodynamic instabilities in thin liquid films”, J. Fluid Mech., 631 (2009), 255–279 | DOI | MR | Zbl
[14] F. L. Dullien, Fluid Transport and Pore Structure, Acad. Press, New York, 1992
[15] A. Meirmanov, Mathematical Models for Poroelastic Flows, v. 1, Atlantis Studies in Differential Equations, Atlantis Press, Paris, 2014 | MR | Zbl
[16] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, Oxford, 1961 | MR | Zbl
[17] G. M. Moatimid, “Stability conditions of an electrified miscible viscous fluid sheet”, J. Colloid Interface Sci., 259:1 (2003), 186–199 | DOI
[18] J. R. A. Pearson, P. M. J. Tardy, “Models for flow of non-Newtonian and fluids through porous media”, J. Non-Newtonian Fluid Mech., 102:2 (2002), 447–473 | DOI | Zbl
[19] M. F. El-Sayed, N. T. Eldabe, M. H. Haroun, D. M. Mostafa, “Nonlinear electrohydrodynamic stability of two superposed Walters B$'$ viscoelastic fluids in relative motion through porous medium”, J. Mech., 29:4 (2013), 569–582 | DOI
[20] A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations, Wiley, New York, 1979 | MR | Zbl
[21] Z. Zahreddine, E. F. Elshehawey, “On the stability of a system of differential equations with complex coefficient”, Indian J. Pure Appl. Math., 19:10 (1988), 963–972 | MR | Zbl