Stability characteristics of periodic streaming fluids in porous
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 126-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the linear stability of a three-layer flow of immiscible liquids located in a periodic normal electric field. We consider certain porous media assumed to be uniform, homogeneous, and isotropic. We analytically and numerically simulate the system of linear evolution equations of such a medium. The linearized problem leads to a system of two Mathieu equations with complex coefficients of the damping terms. We study the effects of the streaming velocity, permeability of the porous medium, and the electrical properties of the flow of a thin layer (film) of liquid on the flow instability. We consider several special cases of such systems. As a special case, we consider a uniform electric field and solve the transition curve equations up to the second order in a small dimensionless parameter. We show that the dielectric constant ratio and also the electric field play a destabilizing role in the stability criteria, while the porosity has a dual effect on the wave motion. In the case of an alternating electric field and a periodic velocity, we use the method of multiple time scales to calculate approximate solutions and analyze the stability criteria in the nonresonance and resonance cases; we also obtain transition curves in these cases. We show that an increase in the velocity and the electric field promote oscillations and hence have a destabilizing effect.
Keywords: linear stability, periodic electric field, porous media, streamline.
Mots-clés : Mathieu equation
@article{TMF_2017_191_1_a8,
     author = {S. A. Alkharashi and Y. Gamiel},
     title = {Stability characteristics of periodic streaming fluids in porous},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {126--150},
     year = {2017},
     volume = {191},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a8/}
}
TY  - JOUR
AU  - S. A. Alkharashi
AU  - Y. Gamiel
TI  - Stability characteristics of periodic streaming fluids in porous
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 126
EP  - 150
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a8/
LA  - ru
ID  - TMF_2017_191_1_a8
ER  - 
%0 Journal Article
%A S. A. Alkharashi
%A Y. Gamiel
%T Stability characteristics of periodic streaming fluids in porous
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 126-150
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a8/
%G ru
%F TMF_2017_191_1_a8
S. A. Alkharashi; Y. Gamiel. Stability characteristics of periodic streaming fluids in porous. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 126-150. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a8/

[1] A. F. Elhefnawy, “Intervals of an unsteady electrohydrodynamic Kelvin–Helmoltz stability”, Phys. A, 214:2 (1995), 229–241 | DOI | MR

[2] T. Funada, D. D. Joseph, “Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel”, J. Fluid Mech., 445 (2001), 263–283 | DOI | MR | Zbl

[3] P. K. Bhatia, “Rayleigh–Taylor instability of two viscous superposed conducting fluids”, Nuovo Cimento B, 19:2 (1974), 161–168 | DOI

[4] K. Zakaria, M. A. Sirwah, S. Alkharashi, “Instability through porous media of three layers superposed conducting fluids”, Eur. J. Mech. B Fluids, 28:2 (2009), 259–270 | DOI | MR | Zbl

[5] P. G. Drazin, W. H. Reid, Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl

[6] D. D. Joseph, Stability of Fluid Motions II, Springer Tracts in Natural Philosophy, 28, Springer, Berlin, 1976 | DOI | MR | Zbl

[7] G. M. Sisoev, O. K. Matar, D. Sileri, C. J. Lawrence, “Wave regimes in two-layer microchannel flow”, Chem. Eng. Sci., 64:13 (2009), 3094–3102 | DOI

[8] I. M. R. Sadiq, R. Usha, S. W. Joo, “Instabilities in a liquid film flow over an inclined heated porous substrate”, Chem. Eng. Sci., 65:15 (2010), 4443–4459 | DOI

[9] D. Prieling, H. Steiner, “Analysis of the wall mass transfer on spinning disks using an integral boundary layer method”, Chem. Eng. Sci., 101 (2013), 109–119 | DOI

[10] F. Li, O. Ozen, N. Aubry, D. T. Papageorgiou, P. G. Petropoulos, “Linear stability of a two-fluid interface for electrohydrodynamic mixing in a channel”, J. Fluid Mech., 583 (2007), 347–377 | DOI | MR | Zbl

[11] D. Tseluiko, M. G. Blyth, D. T. Papageorgiou, J.-M. Vanden-Broeck, “Electrified viscous thin film flow over topography”, J. Fluid Mech., 597 (2008), 449–475 | DOI | MR | Zbl

[12] L. Espín, A. Corbett, S. Kumar, “Electrohydrodynamic instabilities in thin viscoelastic films – AC and DC fields”, J. Non-Newtonian Fluid Mech., 196 (2013), 102–111 | DOI

[13] S. A. Roberts, S. Kumar, “AC electrohydrodynamic instabilities in thin liquid films”, J. Fluid Mech., 631 (2009), 255–279 | DOI | MR | Zbl

[14] F. L. Dullien, Fluid Transport and Pore Structure, Acad. Press, New York, 1992

[15] A. Meirmanov, Mathematical Models for Poroelastic Flows, v. 1, Atlantis Studies in Differential Equations, Atlantis Press, Paris, 2014 | MR | Zbl

[16] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, Oxford, 1961 | MR | Zbl

[17] G. M. Moatimid, “Stability conditions of an electrified miscible viscous fluid sheet”, J. Colloid Interface Sci., 259:1 (2003), 186–199 | DOI

[18] J. R. A. Pearson, P. M. J. Tardy, “Models for flow of non-Newtonian and fluids through porous media”, J. Non-Newtonian Fluid Mech., 102:2 (2002), 447–473 | DOI | Zbl

[19] M. F. El-Sayed, N. T. Eldabe, M. H. Haroun, D. M. Mostafa, “Nonlinear electrohydrodynamic stability of two superposed Walters B$'$ viscoelastic fluids in relative motion through porous medium”, J. Mech., 29:4 (2013), 569–582 | DOI

[20] A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations, Wiley, New York, 1979 | MR | Zbl

[21] Z. Zahreddine, E. F. Elshehawey, “On the stability of a system of differential equations with complex coefficient”, Indian J. Pure Appl. Math., 19:10 (1988), 963–972 | MR | Zbl