Topological nature of the inertiality of a nonequilibrium system far from equilibrium
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 116-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider inertial and topological properties of a nonequilibrium system far from the equilibrium. We show that from the topological standpoint, the layered structure of the energy levels of a nonequilibrium system leads to the concept of connectivity. We state an assumption on the key role of the dimension of the hypersurface of the full entropy production in the study of the inertiality of an irreversible process in a nonequilibrium system including in the region of unstable states.
Keywords: nonequilibrium system, inertiality, Le Chatelier–Brown principle, restructuring, connectivity.
Mots-clés : quantization
@article{TMF_2017_191_1_a7,
     author = {M. {\CYRV}. Saihanov},
     title = {Topological nature of the~inertiality of a~nonequilibrium system far from equilibrium},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {116--125},
     year = {2017},
     volume = {191},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a7/}
}
TY  - JOUR
AU  - M. В. Saihanov
TI  - Topological nature of the inertiality of a nonequilibrium system far from equilibrium
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 116
EP  - 125
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a7/
LA  - ru
ID  - TMF_2017_191_1_a7
ER  - 
%0 Journal Article
%A M. В. Saihanov
%T Topological nature of the inertiality of a nonequilibrium system far from equilibrium
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 116-125
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a7/
%G ru
%F TMF_2017_191_1_a7
M. В. Saihanov. Topological nature of the inertiality of a nonequilibrium system far from equilibrium. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 116-125. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a7/

[1] I. Prigozhin, Ot suschestvuyuschego k voznikayuschemu, Nauka, M., 1985

[2] A. I. Osipov, A. V. Uvarov, “Kineticheskie i gazodinamicheskie protsessy v neravnovesnoi molekulyarnoi fizike”, UFN, 162:11 (1992), 1–42 | DOI | DOI

[3] M. B. Saikhanov, “Modelirovanie neobratimykh protsessov v neizotermicheskikh sistemakh”, TVT, 44:6 (2006), 877–884 | DOI

[4] M. B. Saikhanov, “Kineticheskoe modelirovanie dissipativnykh struktur”, Nelineinyi mir, 11:1 (2013), 44–50

[5] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika, v. 3, Teoriya neravnovesnykh sistem, Editorial URSS, M., 2011 | MR

[6] M. B. Saikhanov, “O termodinamicheskoi i kineticheskoi ustoichivosti neravnovesnykh sistem”, ZhFKh, 80:7 (2006), 1330–1332

[7] M. B. Saikhanov, “Quantization of nonequilibrium nonstationary system”, Internat. J. Modern. Phys. B, 26:12 (2012), 1241005, 15 pp. | DOI | Zbl

[8] S. Khildebrant, “Kraevye zadachi dlya minimalnykh poverkhnostei”, Geometriya – 5. Minimalnye poverkhnosti, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 90, Fizmatlit, M., 2003, 205–306 | MR | Zbl

[9] D. Gromol, V. Klingenberg, V. Meier, Rimanova geometriya v tselom, Mir, M., 1971 | MR | Zbl

[10] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[11] A. T. Fomenko, “Mnogomernye variatsionnye metody v topologii ekstremalei”, UMN, 36:6(222) (1981), 105–135 | MR | Zbl

[12] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1988 | MR | MR

[13] B. A. Rozenfeld, Mnogomernye prostranstva, Nauka, M., 1966 | MR

[14] M. B. Saikhanov, “O nekotorykh topologicheskikh svoistvakh kineticheskogo modelirovaniya neravnovesnykh sistem”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2012, no. 1, 34–37 | DOI

[15] D. N. Novichkov, V. V. Glebov, “Eksperimentalnye issledovaniya nestatsionarnykh protsessov v neravnovesnoi plazme smesi tseziya s argonom”, TVT, 8:4 (1970), 695–706 | MR

[16] A. Narat, “Yadernyi magnitnyi rezonans v magnetikakh i metallakh”, Sverkhtonkie vzaimodeistviya v tverdykh telakh, Mir, M., 1970, 163–235

[17] P. Glensdorf, I. Prigozhin, Termodinamicheskaya teoriya struktury, ustoichivosti i fluktuatsii, Editorial URSS, M., 2003 | MR | Zbl

[18] E. A. Solovev, “Neadiabaticheskie perekhody v atomnykh stolknoveniyakh”, UFN, 157:3 (1989), 437–476 | DOI | DOI

[19] V. V. Nosov, V. M. Grigorev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, A. V. Torgaev, “Kogerentnye struktury v turbulentnoi atmosfere. Eksperiment i teoriya”, Solnechno-zemnaya fizika, 14 (2009), 97–113