Canonical ensemble of particles in a self-avoiding random walk
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 100-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an ensemble of particles not interacting with each other and randomly walking in the $d$-dimensional Euclidean space $\mathbb R^d$. The individual moves of each particle are governed by the same distribution, but after the completion of each such move of a particle, its position in the medium is "marked" as a region in the form of a ball of diameter $r_0$, which is not available for subsequent visits by this particle. As a result, we obtain the corresponding ensemble in $\mathbb R^d$ of marked trajectories in each of which the distance between the centers of any pair of these balls is greater than $r_0$. We describe a method for computing the asymptotic form of the probability density $W_n(\mathbf r)$ of the distance $r$ between the centers of the initial and final balls of a trajectory consisting of $n$ individual moves of a particle of the ensemble. The number $n$, the trajectory modulus, is a random variable in this model in addition to the distance $r$. This makes it necessary to determine the distribution of $n$, for which we use the canonical distribution obtained from the most probable distribution of particles in the ensemble over the moduli of their trajectories. Averaging the density $W_n(\mathbf r)$ over the canonical distribution of the modulus $n$ allows finding the asymptotic behavior of the probability density of the distance $r$ between the ends of the paths of the canonical ensemble of particles in a self-avoiding random walk in $\mathbb R^d$ for $2\le d<4$.
Mots-clés : canonical ensemble, constitutive equation
Keywords: self-avoiding random walk, renormalization group, saddle-point method, asymptotic distribution.
@article{TMF_2017_191_1_a6,
     author = {V. I. Alkhimov},
     title = {Canonical ensemble of particles in a~self-avoiding random walk},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {100--115},
     year = {2017},
     volume = {191},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a6/}
}
TY  - JOUR
AU  - V. I. Alkhimov
TI  - Canonical ensemble of particles in a self-avoiding random walk
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 100
EP  - 115
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a6/
LA  - ru
ID  - TMF_2017_191_1_a6
ER  - 
%0 Journal Article
%A V. I. Alkhimov
%T Canonical ensemble of particles in a self-avoiding random walk
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 100-115
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a6/
%G ru
%F TMF_2017_191_1_a6
V. I. Alkhimov. Canonical ensemble of particles in a self-avoiding random walk. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 100-115. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a6/

[1] K. Khuang, Statisticheskaya mekhanika, Mir, M., 1966 | MR

[2] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[3] V. I. Alkhimov, “$d$-Mernaya model kanonicheskogo ansamblya otkrytykh strun”, TMF, 180:1 (2014), 125–144 | DOI | DOI | MR | Zbl

[4] V. I. Alkhimov, “Effekt isklyuchennogo ob'ema v statistike samoizbegayuschikh bluzhdanii”, UFN, 164:6 (1994), 561–601 | DOI

[5] E. Titchmarsh, Teoriya funktsii, Nauka, M., 1980 | MR | MR | Zbl | Zbl

[6] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967 | MR | MR | Zbl

[7] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[8] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[9] M. Gell-Mann, F. E. Low, “Quantum electrodynamics at small distances”, Phys. Rev., 95:5 (1954), 1300–1312 | DOI | MR | Zbl

[10] V. I. Alkhimov, “Self-avoiding random walk in $d4$ dimensions”, Phys. Lett. A, 133:1–2 (1988), 15–17 | DOI | MR

[11] D. Bridges, T. Spencer, “Self-avoiding walk in 5 or more dimensions”, Commun. Math. Phys., 97:1 (1985), 125–148 | DOI | MR

[12] T. Hara, G. Slade, “The lace expansion for self-avoiding walk in five or more dimensions”, Rev. Math. Phys., 4:2 (1992), 235–327 | DOI | MR | Zbl