Dissipation effects in infinite-dimensional Hamiltonian systems.
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 78-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the potential coupling of classical mechanical systems (an oscillator and a heat bath), one of which (the heat bath) is linear and infinite-dimensional, can provoke energy dissipation in a finite-dimensional subsystem (the oscillator). Under natural assumptions, the final dynamics of an oscillator thus reduces to a tendency toward equilibrium. D. V. Treschev previously obtained results concerning the dynamics of an oscillator with one degree of freedom and a quadratic or (under some additional assumptions) polynomial potential. Later, A. V. Dymov considered the case of a linear oscillator with an arbitrary (finite) number of degrees of freedom. We generalize these results to the case of a heat bath (consisting of several components) and a multidimensional oscillator (either linear or nonlinear).
Keywords: Lagrange system, system with infinite number of degrees of freedom, final dynamics.
@article{TMF_2017_191_1_a5,
     author = {S. M. Saulin},
     title = {Dissipation effects in infinite-dimensional {Hamiltonian} systems.},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--99},
     year = {2017},
     volume = {191},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a5/}
}
TY  - JOUR
AU  - S. M. Saulin
TI  - Dissipation effects in infinite-dimensional Hamiltonian systems.
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 78
EP  - 99
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a5/
LA  - ru
ID  - TMF_2017_191_1_a5
ER  - 
%0 Journal Article
%A S. M. Saulin
%T Dissipation effects in infinite-dimensional Hamiltonian systems.
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 78-99
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a5/
%G ru
%F TMF_2017_191_1_a5
S. M. Saulin. Dissipation effects in infinite-dimensional Hamiltonian systems.. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 78-99. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a5/

[1] D. Treschev, “Oscillator and thermostat”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1693–1712 | DOI | MR | Zbl

[2] A. V. Dymov, “Dissipativnye effekty v odnoi lagranzhevoi mekhanicheskoi sisteme s beskonechnym chislom stepenei svobody”, Izv. RAN. Ser. matem., 76:6 (2012), 45–80 | DOI | DOI | MR | Zbl

[3] N. N. Bogolyubov, “Elementarnyi primer ustanovleniya statisticheskogo ravnoveciya v sisteme, svyazannoi s termostatom”, O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Kiev, 1945, 115–137

[4] A. I. Komech, “O stabilizatsii vzaimodeistviya struny s nelineinym ostsillyatorom”, Vest. Mosk. un-ta. Ser. 1. Matem., mekh., 1991, no. 6, 35–41 | Zbl

[5] A. I. Komech, H. Spohn, M. Kunze, “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Commun. Partial Differ. Equations, 22:1–2 (1997), 307–335 | DOI | MR | Zbl

[6] A. I. Komech, H. Spohn, “Long-time asymptotics for a coupled Maxwell–Lorentz equations”, Commun. Partial Differ. Equations, 25:3–4 (2000), 559–584 | DOI | MR | Zbl

[7] A. O. Caldeira, A. J. Leggett, “Quantum tunnelling in a dissipative system”, Ann. Phys., 149:2 (1983), 374–456 | DOI | MR

[8] A. O. Caldeira, A. J. Leggett, “Influence of dissipattion on quantum tunneling in macroscopic systems”, Phys. Rev. Lett., 46:4 (1981), 211–214 | DOI | MR

[9] A. O. Caldeira, A. J. Leggett, “Path integral approach to quantum Brownian motion”, Phys. A, 121:3 (1983), 587–616 ; Erratum, 130:1–2 (1985), 374 | DOI | MR | Zbl | DOI | MR

[10] F. M. Ramazanoglu, “Approach to thermal equilibrium in the Caldeira–Leggett model”, J. Phys. A: Math. Theor., 42:26 (2009), 265303, 15 pp., arXiv: 0812.2520 | DOI | MR | Zbl

[11] A. Cacheffo, M. H. Y. Moussa, M. A. de Ponte, “The double Caldeira–Leggett model: derivation and solutions of the master equations, reservoir-induced interactions and decoherence”, Phys. A, 389:11 (2010), 2198–2217, arXiv: 0903.2176 | DOI | MR

[12] V. Ayyar, B. Müller, “Approach to equilibrium in the Caldeira–Leggett model”, Internat. J. Modern Phys. E, 22:3 (2013), 1350016, 18 pp., arXiv: 1212.3538 | DOI

[13] J. F. R. Archilla, R. S. MacKay, J. L. Marín, “Discrete breathers and Anderson modes: two faces of the same phenomenon”, Phys. D, 134:4 (1999), 406–418 | DOI | MR | Zbl

[14] R. S. MacKay, “Discrete breathers: classical and quantum”, Phys. A, 288:1–4 (2000), 174–198 | DOI | MR

[15] V. Koukouloyannis, R. S. MacKay, “Existence and stability of 3-site breathers in a triangular lattice”, J. Phys. A: Math. Gen., 38:5 (2005), 1021–1030 | DOI | MR | Zbl

[16] R. Yamapi, R. S. MacKay, “Stability of synchronisation in a shift-invariant ring of mutually coupled oscillators”, Discrete Contin. Dyn. Syst. Ser. B, 10:4 (2008), 973–996 | DOI | MR | Zbl

[17] E. A. Gorin, D. V. Treschev, “Otnositelnyi variant teoremy Titchmarsha o svertke”, Funkts. analiz i ego pril., 46:1 (2012), 31–38 | DOI | DOI | MR | Zbl

[18] V. I. Bogachev, Osnovy teorii mery, v. 1, RKhD, M.–Izhevsk, 2006 | DOI | MR | Zbl

[19] L. Shwartz, Cours d'analyse, v. 2, Hermann, Paris, 1981 | MR

[20] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR | MR | Zbl