@article{TMF_2017_191_1_a5,
author = {S. M. Saulin},
title = {Dissipation effects in infinite-dimensional {Hamiltonian} systems.},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {78--99},
year = {2017},
volume = {191},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a5/}
}
S. M. Saulin. Dissipation effects in infinite-dimensional Hamiltonian systems.. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 78-99. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a5/
[1] D. Treschev, “Oscillator and thermostat”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1693–1712 | DOI | MR | Zbl
[2] A. V. Dymov, “Dissipativnye effekty v odnoi lagranzhevoi mekhanicheskoi sisteme s beskonechnym chislom stepenei svobody”, Izv. RAN. Ser. matem., 76:6 (2012), 45–80 | DOI | DOI | MR | Zbl
[3] N. N. Bogolyubov, “Elementarnyi primer ustanovleniya statisticheskogo ravnoveciya v sisteme, svyazannoi s termostatom”, O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Kiev, 1945, 115–137
[4] A. I. Komech, “O stabilizatsii vzaimodeistviya struny s nelineinym ostsillyatorom”, Vest. Mosk. un-ta. Ser. 1. Matem., mekh., 1991, no. 6, 35–41 | Zbl
[5] A. I. Komech, H. Spohn, M. Kunze, “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Commun. Partial Differ. Equations, 22:1–2 (1997), 307–335 | DOI | MR | Zbl
[6] A. I. Komech, H. Spohn, “Long-time asymptotics for a coupled Maxwell–Lorentz equations”, Commun. Partial Differ. Equations, 25:3–4 (2000), 559–584 | DOI | MR | Zbl
[7] A. O. Caldeira, A. J. Leggett, “Quantum tunnelling in a dissipative system”, Ann. Phys., 149:2 (1983), 374–456 | DOI | MR
[8] A. O. Caldeira, A. J. Leggett, “Influence of dissipattion on quantum tunneling in macroscopic systems”, Phys. Rev. Lett., 46:4 (1981), 211–214 | DOI | MR
[9] A. O. Caldeira, A. J. Leggett, “Path integral approach to quantum Brownian motion”, Phys. A, 121:3 (1983), 587–616 ; Erratum, 130:1–2 (1985), 374 | DOI | MR | Zbl | DOI | MR
[10] F. M. Ramazanoglu, “Approach to thermal equilibrium in the Caldeira–Leggett model”, J. Phys. A: Math. Theor., 42:26 (2009), 265303, 15 pp., arXiv: 0812.2520 | DOI | MR | Zbl
[11] A. Cacheffo, M. H. Y. Moussa, M. A. de Ponte, “The double Caldeira–Leggett model: derivation and solutions of the master equations, reservoir-induced interactions and decoherence”, Phys. A, 389:11 (2010), 2198–2217, arXiv: 0903.2176 | DOI | MR
[12] V. Ayyar, B. Müller, “Approach to equilibrium in the Caldeira–Leggett model”, Internat. J. Modern Phys. E, 22:3 (2013), 1350016, 18 pp., arXiv: 1212.3538 | DOI
[13] J. F. R. Archilla, R. S. MacKay, J. L. Marín, “Discrete breathers and Anderson modes: two faces of the same phenomenon”, Phys. D, 134:4 (1999), 406–418 | DOI | MR | Zbl
[14] R. S. MacKay, “Discrete breathers: classical and quantum”, Phys. A, 288:1–4 (2000), 174–198 | DOI | MR
[15] V. Koukouloyannis, R. S. MacKay, “Existence and stability of 3-site breathers in a triangular lattice”, J. Phys. A: Math. Gen., 38:5 (2005), 1021–1030 | DOI | MR | Zbl
[16] R. Yamapi, R. S. MacKay, “Stability of synchronisation in a shift-invariant ring of mutually coupled oscillators”, Discrete Contin. Dyn. Syst. Ser. B, 10:4 (2008), 973–996 | DOI | MR | Zbl
[17] E. A. Gorin, D. V. Treschev, “Otnositelnyi variant teoremy Titchmarsha o svertke”, Funkts. analiz i ego pril., 46:1 (2012), 31–38 | DOI | DOI | MR | Zbl
[18] V. I. Bogachev, Osnovy teorii mery, v. 1, RKhD, M.–Izhevsk, 2006 | DOI | MR | Zbl
[19] L. Shwartz, Cours d'analyse, v. 2, Hermann, Paris, 1981 | MR
[20] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR | MR | Zbl