Perturbation theory in the scattering problem for a three-particle
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 63-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the scattering problem for a system of three nonrelativistic particles in the case of energies below the threshold of the system breakup into three free particles. We assume that the interaction potentials can be represented as a sum of two terms, one of which is a small perturbation. We develop a perturbation theory scheme for solving the scattering problem based on the three-particle Faddeev equations.
Keywords: perturbation theory, continuous spectrum, three-particle scattering problem.
@article{TMF_2017_191_1_a4,
     author = {V. A. Gradusov and S. L. Yakovlev},
     title = {Perturbation theory in the~scattering problem for a~three-particle},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {63--77},
     year = {2017},
     volume = {191},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a4/}
}
TY  - JOUR
AU  - V. A. Gradusov
AU  - S. L. Yakovlev
TI  - Perturbation theory in the scattering problem for a three-particle
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 63
EP  - 77
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a4/
LA  - ru
ID  - TMF_2017_191_1_a4
ER  - 
%0 Journal Article
%A V. A. Gradusov
%A S. L. Yakovlev
%T Perturbation theory in the scattering problem for a three-particle
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 63-77
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a4/
%G ru
%F TMF_2017_191_1_a4
V. A. Gradusov; S. L. Yakovlev. Perturbation theory in the scattering problem for a three-particle. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 63-77. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a4/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika: nerelyativistskaya teoriya, Nauka, M., 1974 | MR | MR | Zbl

[2] Dzh. Teilor, Teoriya rasseyaniya. Kvantovaya teoriya nerelyativistskikh stolknovenii, Nauka, M., 1975

[3] A. Messiah, Quantum Mechanics, v. I, John Wiley and Sons, New York, 1958 | MR

[4] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | Zbl

[5] L. D. Faddeev, Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Tr. MIAN, 69, Izd-vo AN SSSR, M.-L., 1963 | MR

[6] S. L. Yakovlev, C.-Y. Hu, D. Caballero, “Multichannel formalism for positron-hydrogen scattering and annihilation”, J. Phys. B, 40:10 (2007), 1675–1693 | DOI

[7] S. L. Yakovlev, C. Y. Hu, “Multichannel scattering and annihilation in the positron hydrogen system”, Few Body Syst., 44:1 (2008), 237–239 | DOI

[8] V. S. Buslaev, M. M. Skriganov, “Koordinatnaya asimpotika resheniya zadachi rasseyaniya dlya uravneniya Shredingera”, TMF, 19:2 (1974), 217–232 | DOI | MR | Zbl

[9] A. Ya. Povzner, “O razlozhenii proizvolnykh funktsii po sobstvennym funktsiyam operatora $-\Delta u+cu$”, Matem. sb., 32(74):1 (1953), 109–156 | MR | Zbl

[10] S. L. Yakovlev, “Differentsialnye uravneniya Faddeeva kak spektralnaya zadacha dlya nesimmetrichnogo operatora”, TMF, 107:3 (1996), 513–528 | DOI | DOI | MR | Zbl

[11] S. P. Merkurev, “O teorii rasseyaniya dlya sistemy trekh chastits s kulonovskim vzaimodeistviem”, YaF, 24:2 (1976), 289–297

[12] Z. Papp, J. Darai, A. Nishimura, Z. T. Hlousek, C.-Y. Hu, S. L. Yakovlev, “Faddeev–Merkuriev equations for resonances in three-body Coulombic systems”, Phys. Lett. A, 304:1–2 (2002), 36–42 | DOI | MR | Zbl

[13] O. A. Yakubovskii, “Ob integralnykh uravneniyakh teorii rasseyaniya $N$ chastits”, YaF, 5:6 (1967), 1312–1319

[14] S. P. Merkurev, S. L. Yakovlev, “Kvantovaya teoriya rasseyaniya dlya $N$ tel v konfiguratsionnom prostranstve”, TMF, 56:1 (1983), 60–73 | DOI | MR

[15] S. L. Yakovlev, “Kvantovaya problema $N$ tel: matrichnye struktury i uravneniya”, TMF, 181:1 (2014), 218–240 | DOI | DOI | Zbl