The method of amplitude functions in two-dimensional scattering
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 34-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a formulation and mathematical justification of the method of amplitude functions. This method allows solving the radial problem of the two-dimensional scattering of a quantum particle by the sum of a Coulomb potential and a certain short-range or long-range central potential.
Keywords: two-dimensional scattering, superposition of Coulomb and short- or long-range potentials, phase-function method.
@article{TMF_2017_191_1_a3,
     author = {V. V. Pupyshev},
     title = {The~method of amplitude functions in two-dimensional scattering},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {34--62},
     year = {2017},
     volume = {191},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a3/}
}
TY  - JOUR
AU  - V. V. Pupyshev
TI  - The method of amplitude functions in two-dimensional scattering
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 34
EP  - 62
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a3/
LA  - ru
ID  - TMF_2017_191_1_a3
ER  - 
%0 Journal Article
%A V. V. Pupyshev
%T The method of amplitude functions in two-dimensional scattering
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 34-62
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a3/
%G ru
%F TMF_2017_191_1_a3
V. V. Pupyshev. The method of amplitude functions in two-dimensional scattering. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 34-62. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a3/

[1] L. D. Caar, D. DeMille, R. V. Krems, J. Ye, “Cold and ultracold molecules: science, technology and applications”, New J. Phys., 11:5 (2009), 055049, 87 pp. | DOI

[2] K. G. Nath, O. Ivasenko, J. M. MacLeod, J. A. Miwa, J. D. Wuest, A. Nanci, D. F. Perepichka, F. Rosei, “Crystal engineering in two dimensions: an approach to molecular nanopatterning”, J. Phys. Chem. C, 111:45 (2007), 16996–17007 | DOI

[3] I. F. Silvera, J. T. M. Walraven, “Stabilization of atomic hydrogen at low temperature”, Phys. Rev. Lett., 44:3 (1980), 164–168 | DOI

[4] M. Papoular, “On the dynamical stability of D$\downarrow$”, J. Low Temp. Phys., 50:3 (1983), 253–258 | DOI

[5] Yu. Kagan, G. V. Shlyapnikov, I. A. Vartanyants, N. A. Glukhov, “Kvazidvumernyi spin-polyarizovannyi atomarnyi vodorod”, Pisma v ZhETF, 35:9 (1982), 386–390

[6] V. S. Melezhik, A. Negretti, “Confinement-induced resonances in ultracold atom-ion systems”, Phys. Rev. A, 94:2 (2016), 022704, 8 pp., arXiv: 1602.05550 | DOI

[7] V. V. Babikov, Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1976 | MR

[8] H. Friedrich, Scattering Theory, Lecture Notes in Physics, 872, Springer, Berlin, 2013 | DOI | MR | Zbl

[9] S. A. Rakityansky, N. Elander, “Analytic structure and power series expansion of the Jost function for the two-dimensional problem”, J. Phys. A: Math. Theor., 45:13 (2012), 135209, 28 pp. | DOI | MR | Zbl

[10] V. V. Pupyshev, “Rasseyanie medlennoi kvantovoi chastitsy aksialno-simmetrichnym korotkodeistvuyuschim potentsialom”, YaF, 77:5 (2014), 699–710 | DOI | DOI

[11] V. V. Pupyshev, “Dlina i effektivnyi radius dvumernogo rasseyaniya kvantovoi chastitsy tsentralnym korotkodeistvuyuschim potentsialom”, TMF, 180:3 (2014), 342–367 | DOI | DOI | Zbl

[12] V. V. Pupyshev, “Energii slabosvyazannykh i okoloporogovykh rezonansnykh sostoyanii kvantovoi chastitsy v dvumernoi ploskosti”, TMF, 179:1 (2014), 102–122 ; “Приближение эффективного радиуса в задаче двумерного рассеяния центральным короткодействующим потенциалом”, 182:2 (2015), 315–337 | DOI | DOI | Zbl | DOI | DOI | MR | Zbl

[13] G. Barton, “Rutherford scattering in two dimensions”, Amer. J. Phys., 51:5 (1983), 420–422 | DOI

[14] D. Bollé, F. Gesztesy, “Scattering observables in arbitrary dimension $n\ge 2$”, Phys. Rev. A, 30:3 (1984), 1279–1293 | DOI

[15] X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, W. Y. Ching, “Analytic solution of a two- dimensional hydrogen atom. I. Nonrelativistic theory”, Phys. Rev. A., 43:3 (1991), 1186–1196 | DOI | MR

[16] V. V. Pupyshev, “Dvumernoe kulonovskoe rasseyanie kvantovoi chastitsy: stroenie radialnykh volnovykh funktsii”, TMF, 186:1 (2016), 123–141 | DOI | DOI | MR | Zbl

[17] V. V. Pupyshev, “Dvumernoe kulonovskoe rasseyanie kvantovoi chastitsy: volnovye funktsii i funktsii Grina”, TMF, 186:2 (2016), 252–271 | DOI | DOI | MR | Zbl

[18] Dzh. Teilor, Teoriya rasseyaniya. Kvantovaya teoriya nerelyativistskikh stolknovenii, Nauka, M., 1975

[19] F. Kalodzhero, Metod fazovykh funktsii v teorii potentsialnogo rasseyaniya, Mir, M., 1972

[20] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR | Zbl

[21] B. M. Budak, S. V. Fomin, Kratnye integraly i ryady, Fizmatlit, M., 2002 | MR | Zbl

[22] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR | Zbl

[23] S. Klarsfeld, “Behaviour of partial-wave amplitudes for large angular momenta in the presence of Coulomb forces”, Nouvo Cimento A, 43:4 (1966), 1077–1094 | DOI

[24] A. Martin, “Some simple inequalities in scattering by complex potentials”, Nouvo Cimento, 23:3 (1962), 641–654 | DOI | MR | Zbl