Proper conformal Killing vectors in static plane symmetric
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 172-182

Voir la notice de l'article provenant de la source Math-Net.Ru

Conformal Killing vectors (CKVs) in static plane symmetric space–times were recently studied by Saifullah and Yazdan, who concluded by remarking that static plane symmetric space–times do not admit any proper CKV except in the case where these space–times are conformally flat. We present some non-conformally flat static plane symmetric space–time metrics admitting proper CKVs. For these space–times, we also investigate a special type of CKVs, known as inheriting CKVs.
Keywords: Killing vector, homothetic vector, conformal Killing vector, conformally flat space–time.
@article{TMF_2017_191_1_a10,
     author = {T. Hussain and S. Khan and A. H. Bokhari and G. A. Khan},
     title = {Proper conformal {Killing} vectors in static plane symmetric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {172--182},
     publisher = {mathdoc},
     volume = {191},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a10/}
}
TY  - JOUR
AU  - T. Hussain
AU  - S. Khan
AU  - A. H. Bokhari
AU  - G. A. Khan
TI  - Proper conformal Killing vectors in static plane symmetric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 172
EP  - 182
VL  - 191
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a10/
LA  - ru
ID  - TMF_2017_191_1_a10
ER  - 
%0 Journal Article
%A T. Hussain
%A S. Khan
%A A. H. Bokhari
%A G. A. Khan
%T Proper conformal Killing vectors in static plane symmetric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 172-182
%V 191
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a10/
%G ru
%F TMF_2017_191_1_a10
T. Hussain; S. Khan; A. H. Bokhari; G. A. Khan. Proper conformal Killing vectors in static plane symmetric. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 172-182. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a10/