Polynomial forms for quantum elliptic Calogero--Moser Hamiltonians
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 14-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We hypothesize the form of a transformation reducing the elliptic $A_N$ Calogero–Moser operator to a differential operator with polynomial coefficients. We verify this hypothesis for $N\le3$ and, moreover, give the corresponding polynomial operators explicitly.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
elliptic Calogero–Moser Hamiltonian, universal enveloping algebra.
                    
                  
                
                
                @article{TMF_2017_191_1_a1,
     author = {M. G. Matushko and V. V. Sokolov},
     title = {Polynomial forms for quantum elliptic {Calogero--Moser} {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {14--24},
     publisher = {mathdoc},
     volume = {191},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a1/}
}
                      
                      
                    TY - JOUR AU - M. G. Matushko AU - V. V. Sokolov TI - Polynomial forms for quantum elliptic Calogero--Moser Hamiltonians JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 14 EP - 24 VL - 191 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a1/ LA - ru ID - TMF_2017_191_1_a1 ER -
M. G. Matushko; V. V. Sokolov. Polynomial forms for quantum elliptic Calogero--Moser Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 14-24. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a1/
