Global unsolvability of a nonlinear conductor model in the quasistationary approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study initial-boundary value problems for a model differential equation in a bounded region with a quadratic nonlinearity of a special type typical for the theory of conductors. Using the test function method, we show that such a nonlinearity can lead to global unsolvability with respect to time, which from the physical standpoint means an electrical breakdown of the conductor in a finite time. For the simplest test functions, we obtain sufficient conditions for the unsolvability of the model problems and estimates of the blowup rate and time. With concrete examples, we demonstrate the possibility of using the method for one-, two- and three-dimensional problems with classical and nonclassical boundary conditions. We separately consider the Neumann and Navier problems in bounded $\mathbb{R}^N$ regions $(N\ge2)$.
Keywords: conductor theory, noncoercive nonlinearity, initial-boundary value problem, global unsolvability, test function, blowup time estimation.
@article{TMF_2017_191_1_a0,
     author = {M. O. Korpusov and E. V. Yushkov},
     title = {Global unsolvability of a~nonlinear conductor model in the~quasistationary approximation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--13},
     year = {2017},
     volume = {191},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a0/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - E. V. Yushkov
TI  - Global unsolvability of a nonlinear conductor model in the quasistationary approximation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 3
EP  - 13
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a0/
LA  - ru
ID  - TMF_2017_191_1_a0
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A E. V. Yushkov
%T Global unsolvability of a nonlinear conductor model in the quasistationary approximation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 3-13
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a0/
%G ru
%F TMF_2017_191_1_a0
M. O. Korpusov; E. V. Yushkov. Global unsolvability of a nonlinear conductor model in the quasistationary approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 191 (2017) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TMF_2017_191_1_a0/

[1] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[2] H. A. Levine, “Some nonexistance and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathscr{F}(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[3] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[4] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[5] S. I. Pohozaev, “Blow-up of smooth solutions of the Korteweg–de Vries equation”, Nonlinear Anal., 75:12 (2012), 4688–4698 | DOI | MR | Zbl

[6] E. V. Yushkov, “O razrushenii resheniya uravneniya, rodstvennogo uravneniyu Kortevega–de Friza”, TMF, 172:1 (2012), 64–72 | DOI | DOI | MR

[7] E. V. Yushkov, M. O. Korpusov, “Globalnaya nerazreshimost odnomernykh zadach dlya uravnenii tipa Byurgersa”, Matem. zametki, 98:3 (2015), 448–462 | DOI | DOI | MR | Zbl

[8] M. O. Korpusov, E. V. Yushkov, “Razrushenie reshenii sistem uravnenii melkoi vody”, TMF, 177:2 (2013), 264–275 | DOI | DOI | MR | Zbl

[9] S. I. Pokhozhaev, “Ob odnom klasse nachalno-kraevykh zadach dlya uravnenii tipa Kortevega–de Friza”, Differents. uravneniya, 48:3 (2012), 368–374 | DOI | MR | Zbl

[10] M. O. Korpusov, A. G. Sveshnikov, E. V. Yushkov, “Razrushenie reshenii nelineinykh uravnenii tipa Kadomtseva–Petviashvili i Zakharova–Kuznetsova”, Izv. RAN. Ser. matem., 78:3 (2014), 79–110 | DOI | DOI | MR | Zbl

[11] M. O. Korpusov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya dlya uravneniya Bendzhamena–Bona–Makhoni–Byurgersa s nelokalnym granichnym usloviem”, TMF, 175:2 (2013), 159–172 | DOI | DOI | MR | Zbl

[12] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Fizmatlit, M., 2005 | MR

[13] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[14] S. A. Gabov, Vvedenie v teoriyu nelineinykh voln, Izd-vo Mosk. un-ta, M., 1988 | MR | Zbl

[15] N. M. Ryskin, D. I. Trubetskov, Nelineinye volny, Fizmatlit, M., 2000