Accelerated reference systems in $\mathrm{AdS}$ space
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 494-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider reference systems of uniformly accelerated observers in anti-de Sitter space. We construct coordinate transformations for the transition from an inertial reference system to a uniformly accelerated reference system for all acceleration values, both greater and less than critical. The basis for the construction are the Beltrami coordinates, natural coordinates for describing a uniformly accelerated motion because geodesics in anti-de Sitter space in these coordinates become straight lines, i.e., can be described by linear functions. Because translations of space–time coordinates in anti-de Sitter space are non-Abelian, a nontrivial problem of defining the comoving inertial reference system arises. Constructing the coordinate system of an accelerated observer using this auxiliary comoving inertial reference system requires additional transformations that not only equalize the velocities of the two systems but also equalize the system origins. The presence of a critical acceleration in anti-de Sitter space leads to a difference in explicit expressions in passing to an accelerated coordinate system for accelerations greater and less than critical.
Keywords: Rindler coordinates, relativistic kinematics, anti-de Sitter space, Beltrami coordinates.
@article{TMF_2017_190_3_a9,
     author = {S. N. Manida and M. E. Chaikovskii},
     title = {Accelerated reference systems in $\mathrm{AdS}$ space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {494--501},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a9/}
}
TY  - JOUR
AU  - S. N. Manida
AU  - M. E. Chaikovskii
TI  - Accelerated reference systems in $\mathrm{AdS}$ space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 494
EP  - 501
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a9/
LA  - ru
ID  - TMF_2017_190_3_a9
ER  - 
%0 Journal Article
%A S. N. Manida
%A M. E. Chaikovskii
%T Accelerated reference systems in $\mathrm{AdS}$ space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 494-501
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a9/
%G ru
%F TMF_2017_190_3_a9
S. N. Manida; M. E. Chaikovskii. Accelerated reference systems in $\mathrm{AdS}$ space. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 494-501. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a9/

[1] N. D. Birrell, P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, 7, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl

[2] H. Narnhofer, I. Peter, W. Thirring, “How hot is the de Sitter space?”, Internat. J. Modern Phys. B, 10:13–14 (1996), 1507–1520 | DOI | MR | Zbl

[3] S. Deser, O. Levin, “Accelerated detectors and temperature in (anti-) de Sitter spaces”, Class. Quantum Grav., 14:9 (1997), L163–L168 | DOI | MR | Zbl

[4] I. I. Cotăescu, Acceleration in de Sitter spacetimes, arXiv: 1403.3074

[5] S. N. Manida, “Dinamika vzaimodeistvuyuschikh chastits s $SL(2,\mathbb R)$-simmetriei”, TMF, 184:3 (2015), 499–504 | DOI | DOI | MR | Zbl

[6] T. Angsachon, S. N. Manida, M. E. Chaikovskii, “Zakony sokhraneniya dlya klassicheskikh chastits v prostranstve anti-de Sittera–Beltrami”, TMF, 176:1 (2013), 13–21 | DOI | DOI | MR | Zbl

[7] S. N. Manida, “Obobscheniya relyativistskoi kinematiki”, TMF, 169:2 (2011), 323–336 | DOI | DOI | MR | Zbl