Construction of a perturbatively correct light-front Hamiltonian for a $(2+1)$-dimensional gauge theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 479-493 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a perturbation theory on the light front regularized by a method analogous to Pauli–Villars regularization for the $(2{+}1)$-dimensional $SU(N)$-symmetric gauge theory. This allows constructing a correct renormalized light-front Hamiltonian.
Keywords: Pauli–Villars regularization, light-front quantization, gauge field theory.
@article{TMF_2017_190_3_a8,
     author = {M. Yu. Malyshev and E. V. Prokhvatilov and R. A. Zubov and V. A. Franke},
     title = {Construction of a~perturbatively correct light-front {Hamiltonian} for a~$(2+1)$-dimensional gauge theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {479--493},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a8/}
}
TY  - JOUR
AU  - M. Yu. Malyshev
AU  - E. V. Prokhvatilov
AU  - R. A. Zubov
AU  - V. A. Franke
TI  - Construction of a perturbatively correct light-front Hamiltonian for a $(2+1)$-dimensional gauge theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 479
EP  - 493
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a8/
LA  - ru
ID  - TMF_2017_190_3_a8
ER  - 
%0 Journal Article
%A M. Yu. Malyshev
%A E. V. Prokhvatilov
%A R. A. Zubov
%A V. A. Franke
%T Construction of a perturbatively correct light-front Hamiltonian for a $(2+1)$-dimensional gauge theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 479-493
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a8/
%G ru
%F TMF_2017_190_3_a8
M. Yu. Malyshev; E. V. Prokhvatilov; R. A. Zubov; V. A. Franke. Construction of a perturbatively correct light-front Hamiltonian for a $(2+1)$-dimensional gauge theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 479-493. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a8/

[1] S. A. Paston, V. A. Franke, “Sravnenie kvantovo-polevoi teorii vozmuschenii na svetovom fronte i v lorentsevykh koordinatakh”, TMF, 112:3 (1997), 399–416, arXiv: hep-th/9901110 | DOI | DOI

[2] S. A. Paston, E. V. Prokhvatilov, V. A. Franke, “K postroeniyu gamiltoniana KKhD v koordinatakh svetovogo fronta”, TMF, 120:3 (1999), 417–437, arXiv: hep-th/0002062 | DOI | DOI | Zbl

[3] S. A. Paston, E. V. Prokhvatilov, V. A. Franke, “Gamiltonov formalizm na svetovom fronte dlya dvumernoi kvantovoi elektrodinamiki, ekvivalentnyi lorents-kovariantnomu podkhodu”, TMF, 131:1 (2002), 84–97, arXiv: hep-th/0302016 | DOI | DOI | MR | Zbl

[4] S. A. Paston, E. V. Prokhvatilov, V. A. Franke, “On the correspondence between a light-front hamiltonian approach and a Lorentz-covariant formulation for quantum gauge theories”, Nucl. Phys. B Proc. Suppl., 108:1–3 (2002), 189–193, arXiv: hep-th/0111009 | DOI | MR | Zbl

[5] S. J. Brodsky, V. A. Franke, J. R. Hiller, G. McCartor, S. A. Paston, E. V. Prokhvatilov, “A nonperturbative calculation of the electron's magnetic moment”, Nucl. Phys. B, 703:1–2 (2004), 333–362, arXiv: hep-ph/0406325 | DOI | Zbl

[6] S. A. Paston, E. V. Prokhvatilov, V. A. Franke, “Vychislenie spektra mass KED-2 v koordinatakh svetovogo fronta”, YaF, 68:2 (2005), 292–303, arXiv: hep-th/0501186 | DOI

[7] V. A. Franke, Yu. V. Novozhilov, S. A. Paston, E. V. Prokhvatilov, “Quantization of field theory on the light front”, Focus on Quantum Field Theory, ed. O. Kovras, Nova Sci. Publ., New York, 2005, 23–81, arXiv: hep-th/0404031

[8] M. Yu. Malyshev, S. A. Paston, E. V. Prokhvatilov, R. A. Zubov, “Renormalized light front Hamiltonian in the Pauli–Villars regularization”, Internat. J. Theor. Phys., 54:1 (2015), 169–184, arXiv: 1311.4381 | DOI | MR | Zbl

[9] M. Yu. Malyshev, S. A. Paston, E. V. Prokhvatilov, R. A. Zubov, V. A. Franke, “Regulyarizatsiya Pauli–Villarsa i gamiltonian na svetovom fronte v $(2+1)$-mernoi teorii Yanga–Millsa”, TMF, 184:3 (2015), 487–498, arXiv: 1505.00272 | DOI | DOI | MR | Zbl

[10] P. A. M. Dirac, “Forms of relativistic dynamics”, Rev. Modern Phys., 21:3 (1949), 392–399 | DOI | MR | Zbl

[11] M. Burkardt, A. Langnau, “Hamiltonian formulation of $(2+1)$-dimensional QED on the light cone”, Phys. Rev. D, 44:4 (1991), 1187–1197 | DOI | MR

[12] M. Burkardt, A. Langnau, “Rotational invariance in light-cone quantization”, Phys. Rev. D, 44:12 (1991), 3857–3867 | DOI | MR

[13] E. V. Prokhvatilov, V. A. Franke, “Predelnyi perekhod k svetopodobnym koordinatam v teorii polya i KKhD-gamiltonian”, YaF, 49:4 (1989), 1109–1117

[14] E.-M. Ilgenfrits, S. A. Paston, G.-Yu. Pirner, E. V. Prokhvatilov, V. A. Franke, “Kvantovye polya na svetovom fronte, formulirovka v koordinatakh, blizkikh k svetovomu frontu, reshetochnoe priblizhenie”, TMF, 148:1 (2006), 89–101, arXiv: hep-th/0610020 | DOI | DOI | MR

[15] S. D. Głazek, M. Gómez-Rocha, “Asymptotic freedom of gluons in the Fock space”, Acta Phys. Pol. B, 47:1 (2016), 225–242, arXiv: 1510.01609 | DOI | MR

[16] S. D. Głazek, K. G. Wilson, “Perturbative renormalization group for Hamiltonians”, Phys. Rev. D, 49:8 (1993), 4214–4218 | DOI

[17] S. D. Głazek, K. G. Wilson, “Renormalization of Hamiltonians”, Phys. Rev. D, 48:12 (1993), 5863–5872 | DOI

[18] W. Pauli, F. Villars, “On the invariant regularization in relativistic quantum theory”, Rev. Modern Phys., 21:3 (1949), 434–444 | DOI | MR | Zbl

[19] S. Deser, R. Jackiw, S. Templeton, “Topologically massive gauge theories”, Ann. Phys., 281:1–2 (2000), 409–449 | DOI | MR

[20] S. Deser, R. Jackiw, S. Templeton, “Three-dimensional massive gauge theories”, Phys. Rev. Lett., 48:15 (1982), 975–978 | DOI

[21] S. J. Brodsky, J. R. Hiller, G. McCartor, “Application of Pauli–Villars regularization and discretized light-cone quantization to a single-fermion truncation of Yukawa theory”, Phys. Rev. D, 64:11 (2001), 114023, 13 pp., arXiv: hep-ph/0107038 | DOI | MR

[22] S. J. Brodsky, J. R. Hiller, G. McCartor, “Exact Solutions to Pauli–Villars-regulated field theories”, Ann. Phys., 296:2 (2002), 406–424, arXiv: hep-th/0107246 | DOI | Zbl

[23] S. J. Brodsky, J. R. Hiller, G. McCartor, “Application of Pauli–Villars regularization and discretized light-cone quantization to a $(3+1)$-dimensional model”, Phys. Rev. D, 60:5 (1999), 054506, 9 pp., arXiv: hep-ph/9903388 | DOI | MR

[24] S. J. Brodsky, J. R. Hiller, G. McCartor, “Pauli–Villars regulator as a nonperturbative ultraviolet regularization scheme in discretized light-cone quantization”, Phys. Rev. D, 58:2 (1998), 025005, 16 pp., arXiv: hep-th/9802120 | DOI

[25] M. Yu. Malyshev, S. A. Paston, E. V. Prokhvatilov, R. A. Zubov, V. A. Franke, “Pauli–Villars regularization in nonperturbative Hamiltonian approach on the light front”, AIP Conf. Proc., 1701:1 (2016), 100012, 9 pp., arXiv: 1504.07951 | DOI | MR