Renormalization group description of the nonequilibrium critical dynamics of spin systems at the fixed space dimension $d=3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 468-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the method and results of a renormalization group description of nonequilibrium critical relaxation of model A with evolution from an initial high-temperature state. We calculate the two-time dependence of the correlation function and response function and find a violation of the fluctuation-dissipation theorem in the nonequilibrium critical regime. For the limit fluctuation-dissipation relation, which is a universal property of the nonequilibrium critical dynamics, we calculate the fluctuation and impurity corrections in the two-loop approximation at the fixed space dimension $d=3$ using Padé–Borel summation for asymptotic series.
Keywords: nonequilibrium critical dynamics, renormalization group, fluctuation-dissipation relation, aging effect.
@article{TMF_2017_190_3_a7,
     author = {I. M. Lavrukhin and V. V. Prudnikov and P. V. Prudnikov},
     title = {Renormalization group description of the~nonequilibrium critical dynamics of spin systems at the~fixed space dimension $d=3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {468--478},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a7/}
}
TY  - JOUR
AU  - I. M. Lavrukhin
AU  - V. V. Prudnikov
AU  - P. V. Prudnikov
TI  - Renormalization group description of the nonequilibrium critical dynamics of spin systems at the fixed space dimension $d=3$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 468
EP  - 478
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a7/
LA  - ru
ID  - TMF_2017_190_3_a7
ER  - 
%0 Journal Article
%A I. M. Lavrukhin
%A V. V. Prudnikov
%A P. V. Prudnikov
%T Renormalization group description of the nonequilibrium critical dynamics of spin systems at the fixed space dimension $d=3$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 468-478
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a7/
%G ru
%F TMF_2017_190_3_a7
I. M. Lavrukhin; V. V. Prudnikov; P. V. Prudnikov. Renormalization group description of the nonequilibrium critical dynamics of spin systems at the fixed space dimension $d=3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 468-478. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a7/

[1] L. F. Cugliandolo, “Course 7. Dynamics of glassy systems”, Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, Les Houches Session LXXVIII (1–26 July, 2002), v. 77, École d'Eté de Physique Théorique, 77, eds. J-L. Barrat, M. V. Feigelman, J. Kurchan, J. Dalibard, Springer, Berlin, 2003, 367–521

[2] M. Henkel, M. Pleimling, Non-Equilibrium Phase Transitions, v. 2, Ageing and Dynamical Scaling Far From Equilibrium, Springer, Heidelberg, 2010 | MR

[3] N. Afzal, M. Pleimling, “Aging processes in systems with anomalous slow dynamics”, Phys. Rev. E, 87:1 (2013), 012114, 8 pp. | DOI

[4] G. Ehlers, “Study of slow dynamic processes in magnetic systems by neutron spin-echo spectroscopy”, J. Phys., 18:13 (2006), R231–R244 | DOI

[5] L. Berthier, J. Kurchan, “Non-equilibrium glass transitions in driven and active matter”, Nature Phys., 9 (2013), 310–314 | DOI

[6] E. Vincent, J. Hammann, M. Ocio, J.-P. Bouchaud, L. F. Cugliandolo, “Slow dynamics and aging in spin glasses”, Complex Behaviour of Glassy Systems, Proceedings of the XIV Sitges Conference (Sitges, Barcelona, Spain, 10–14 June, 1996), eds. M. Rubi, C. Pérez-Vicente, Springer, Berlin, 1997, 184–219, arXiv: cond-mat/9607224 | DOI

[7] J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, M. Mézard, “Out of equilibrium dynamics in spin-glasses and other glassy system”, Spin Glasses and Random Fields, Directions in Condensed Matter Physics, 12, ed. A. P. Young, World Sci., Singapore, 1998, 161–223 | DOI

[8] P. Calabrese, A. Gambassi, “Ageing properties of critical systems”, J. Phys. A: Math. Gen., 38:18 (2005), R133–R193 | DOI | MR | Zbl

[9] L. Berthier, P. C. W. Holdsworth, M. Sellitto, “Nonequilibrium critical dynamics of the two-dimensional $XY$ model”, J. Phys. A: Math. Gen., 34:9 (2001), 1805–1824 | DOI | MR | Zbl

[10] A. Gambassi, “Relaxation phenomena at criticality”, Eur. Phys. J. B, 64:2 (2008), 379–386 | DOI

[11] V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, P. N. Malyarenko, A. N. Vakilov, “Aging and non-equilibrium critical phenomena in Monte Carlo simulations of 3D pure and diluted Ising models”, Prog. Theor. Exp. Phys., 2015 (2015), 053A01, 20 pp. | DOI | MR

[12] L. F. Cugliandolo, J. Kurchan, “Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model”, Phys. Rev. Lett., 71:1 (1993), 173–176 | DOI

[13] L. F. Cugliandolo, J. Kurchan, “Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics”, Phys. Rev. E, 55:4 (1997), 3898–3914 | DOI

[14] L. F. Cugliandolo, “Effective temperatures out of equilibrium”, AIP Conf. Proc., 484:1 (1999), 238–248 | DOI | Zbl

[15] V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, S. S. Tsirkin, “Renormgruppovoe opisanie protsessov neravnovesnoi kriticheskoi relaksatsii v korotkovremennom rezhime: trekhpetlevoe priblizhenie”, ZhETF, 133:6 (2008), 1251–1257 | DOI

[16] V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, M. V. Rychkov, “Neravnovesnaya kriticheskaya relaksatsiya strukturno neuporyadochennykh sistem v korotkovremennom rezhime: renormgruppovoe opisanie i kompyuternoe modelirovanie”, ZhETF, 137:2 (2010), 287–300 | DOI

[17] V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, A. S. Krinitsyn, “Kompyuternoe modelirovanie kriticheskogo povedeniya trekhmernoi neuporyadochennoi modeli Izinga”, ZhETF, 132:2 (2007), 417–425 | DOI

[18] V. V. Prudnikov, P. V. Prudnikov, A. S. Krinitsyn, A. N. Vakilov, E. A. Pospelov, M. V. Rychkov, “Short-time dynamics and critical behavior of the three-dimensional site-diluted Ising model”, Phys. Rev. E, 81:1 (2010), 011130, 11 pp. | DOI

[19] V. V. Prudnikov, P. V. Prudnikov, B. Zheng, S. V. Dorofeev, V. Yu. Kolesnikov, “Short-time critical dynamics of the three-dimensional systems with long-range correlated disorder”, Progr. Theor. Phys., 117:6 (2007), 973–991 | DOI | Zbl

[20] P. V. Prudnikov, M. A. Medvedeva, “Non-equilibrium critical relaxation of the 3d heisenberg magnets with long-range correlated disorder”, Progr. Theor. Phys., 127:3 (2012), 369–382 | DOI

[21] N. Rosov, C. Hohenemser, M. Eibschütz, “Dynamic critical behavior of the random-exchange Ising system ${\mathrm{Fe}}_{0.9}{\mathrm{Zn}}_{0.1}{\mathrm{F}}_{2}$ determined via Mössbauer spectroscopy”, Phys. Rev. B, 46:6 (1992), 3452–3457 | DOI

[22] P. Calabrese, A. Gambassi, “Two-loop critical fluctuation-dissipation ratio for the relaxational dynamics of the $O(N)$ Landau–Ginzburg Hamiltonian”, Phys. Rev. E, 66:6 (2002), 066101, 12 pp. | DOI

[23] P. Calabrese, A. Gambassi, “Aging and fluctuation-dissipation ratio for the dilute Ising model”, Phys. Rev. B, 66:21 (2002), 212407, 4 pp. | DOI

[24] P. C. Hohenberg, B. I. Halperin, Rev. Modern Phys., 49:3 (1977), 435–479 | DOI

[25] P. V. Prudnikov, V. V. Prudnikov, E. A. Pospelov, “Raschet fluktuatsionno-dissipativnogo otnosheniya dlya neravnovesnogo kriticheskogo povedeniya neuporyadochennykh sistem”, Pisma v ZhETF, 98:10 (2013), 693–699 | DOI | DOI

[26] V. V. Prudnikov, P. V. Trudnikov, E. A. Pospelov, “Chislennye issledovaniya vliyaniya defektov struktury na effekty stareniya i narusheniya fluktuatsionno-dissipativnoi teoremy dlya neravnovesnogo kriticheskogo povedeniya v trekhmernoi modeli Izinga”, ZhETF, 145:3 (2014), 462–471 | DOI

[27] V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, Teoreticheskie metody opisaniya neravnovesnogo kriticheskogo provedeniya strukturno neuporyadochennykh sistem, Fizmatlit, M., 2013

[28] P. Calabrese, A. Gambassi, “Aging in ferromagnetic systems at criticality near four dimensions”, Phys. Rev. E, 65:6 (2002), 066120, 6 pp. | DOI

[29] H. K. Janssen, B. Schaub, B. Schmittmann, “New universal short-time scaling behaviour of critical relaxation processes”, Z. Phys B., 73:4 (1989), 539–549 | DOI

[30] C. Godrèche, J. M. Luck, “Response of non-equilibrium systems at criticality: ferromagnetic models in dimension two and above”, J. Phys. A: Math. Gen., 33:50 (2000), 9141–9164 | DOI | MR | Zbl

[31] A. B. Harris, “Effect of random defects on the critical behaviour of Ising models”, J. Phys. C, 7:9 (1974), 1671-1692 | DOI